
which the processes of interest unfold. For processes
such as information diffusion, which unfold over
hours or days, stable relationships such as kinship
or friendship ties [with turnover times on the order
of years (28)] may be approximated as essentially
static. Such networks cannot be fixed in a life-cycle
context, however, inwhich one’s time scale of interest
may span several decades. Likewise, the dynamics
of rapidly evolving networks [such as radio commu-
nications during emergencies (Fig. 1C) (29)] are of
potential importance even for fast-moving processes,
such as information exchange. Failure to consider
dynamics can lead to extremely misleading results.

A useful example of where static representa-
tions can go awry is provided by the case of HIV
diffusion. Studies of sexual behavior generally
find that the number of sexual partners possessed
by a given individual over a fixed period of time
is skewed (the mean is farther out in the long tail
of the distribution than is the median) (30). Early
studies of the behavior of simple diffusion pro-
cesses on networks with extremely skewed [specif-
ically, power-law (31)] degree distributions strongly
suggested that epidemic potentials for HIV and
similar sexually transmitted diseases were primar-
ily governed by the behavior of a small number of
individuals with large numbers of sexual contacts
(32, 33). This conclusion was of considerable prac-
tical import because it implied that only hub-
targeted strategies were likely to prove efficacious
in reducing epidemic thresholds (31, 32). Although
the applicability of the power-law degree model to
these networks has since been questioned (30, 34),
equally important is the assumption that the time-
aggregated network of sexual contacts was an
effectivemodel for HIV diffusion. The timing and
duration of relationships are critical factors in the
susceptibility of the dynamic network to disease
transmission (35), factors that are hidden by the
time-aggregated representation. This can be seen
in Fig. 1D; for a given network, everyone may
become infected or no onemaybe infected, depend-
ing on the edge duration and time of onset.

Studies of diffusion on dynamic networks sug-
gest that partnership concurrency is also an impor-
tant predictor of epidemic potential; uniformly
low-degree networks potentially support epidem-
ics when relationships are long and coterminous,
and networks with high-degree nodes often fail to
support epidemics when relationships are short and
sequential (35–37). Interventions aimed at mini-
mizing concurrent links are not necessarily the
same as hub-targeted strategies, and thus the
public health recommendations that follow from
a dynamic network analysis may differ from those
that would seem reasonable based on the assump-
tion of a static, time-aggregated network.

AlthoughHIV diffusion is a compelling exam-
ple, it should be emphasized that similar issues can
arise in systems as apparently different as radio com-
munication (Fig. 1C) and peer-to-peer networks.
Recent work in the latter area, for instance, has
emphasized the impact of the entry and exit of

networkmembers (or “churn”) on system perform-
ance (38); in this case, edge dynamics (potential
and actual data transfers) can be understood only
by taking into account the dynamic nature of the
set of nodes.

Conclusion
To represent an empirical phenomenon as a net-
work is a theoretical act. It commits one to assump-
tions about what is interacting, the nature of that
interaction, and the time scale on which that in-
teraction takes place. Such assumptions are not
“free,” and indeed they can be wrong. Whether
studying protein interactions, sexual networks, or
computer systems, the appropriate choice of rep-
resentation is key to getting the correct result.
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PERSPECTIVE

Disentangling the Web of Life
Jordi Bascompte

Biodiversity research typically focuses on species richness and has often neglected interactions, either by
assuming that such interactions are homogeneously distributed or by addressing only the interactions
between a pair of species or a few species at a time. In contrast, a network approach provides a
powerful representation of the ecological interactions among species and highlights their global
interdependence. Understanding how the responses of pairwise interactions scale to entire assemblages
remains one of the great challenges that must be met as society faces global ecosystem change.

Network approaches to ecological research
emphasize the pattern of interactions
among species (the way links are ar-

ranged within the network) rather than the identity
of the species composing a community (the nodes
of the network of interactions). The idea of a com-
plex network of interactions among species is as
old as Darwin’s contemplation of the tangled

bank, showing the importance of networks in ecol-
ogy (1). Despite this early realization, however,
networks have only recently been incorporated into
mainstream ecological theories. The “web of life”
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model depicts the global interdependence among
species (Fig. 1A) and, from a basic point of view,
complements theories on biodiversity that have ei-
ther neglected species interactions or assumed that
they are homogeneously distributed across species.

The network approach benefits from tools and
concepts imported from other fields such as physics
and sociology. This flow of ideas has allowed us to
compare ecological networks with protein inter-
action networks or connectivity within Internet
communities. A comparative framework is useful
because it suggests that there are very general mech-
anisms underlying network formation. Furthermore,
the identification of common architectures, robust
in the face of perturbations regardless of specific
details, may also emerge from such studies.

The Architecture of Biodiversity
Food webs are central to ecology, as a way to
describe and quantify the complexity of ecosys-
tems (2–7) by connecting the trophic interactions
among species in a community. Large networks
are built from combinations of smaller motifs; a
motif is a pattern of overrepresented interrela-
tions among nodes relative to equivalent random-
izations of the network (8) (Fig. 2). Empirical
food webs, for example, show a consistent over-
representation of tri-trophic food chains (in which
a predator eats a consumer which in turn eats a
resource; Fig. 2A), whereas omnivory (the
predator eats both the consumer and the resource;
Fig. 2B) is overrepresented in a majority of food
webs but underrepresented in some (9). How these
motifs combine into larger networks (Fig. 2C)
may influence the stability of the overall network,
as suggested by Robert May on theoretical
grounds (5). The search for empirical evidence
of this theory is a currently active area of research
(10). Analyses of food web motifs have also been
extended to include quantitative information such
as the strength of the interactions (11) and body
mass ratios (12) between predators and their prey.

More recently, ecologists have studied inter-
actions beyond predator-prey webs to include mu-
tually beneficial interactions, such as those between
plants and their animal pollinators or seed dis-
persers. These interactions play a major role in the
generation and maintenance of biodiversity on
Earth (13) and organize communities around a net-
work of mutual dependences (Fig. 1A). Such mu-
tualistic networks are (i) heterogeneous, in which
the bulk of species interact with a few species, and
a few species have a much higher number of inter-
actions than would be expected from chance alone;
(ii) nested, inwhich specialists interactwith a subset
of the group of species that generalists interact with;
and (iii) built onweak and asymmetric links among
species (for example, in some cases when a plant
interacts strongly with an animal, the animal tends
to depend less on the plant) (14). Therefore, mu-
tualistic networks are neither randomly organized
nor organized in isolated compartments, but built
cohesively around a core of generalist species.

Groups of species coevolve in time and space
(13), and the study of this phenomenon has been
facilitated by a network approach. If these groups
of species and their interactions are overrepre-
sented in the network, they can be considered to
be motifs, in which case they are the basic build-
ing blocks from which we can scale up to full
networks. Thesemotifs often vary and develop in
predictable ways among ecosystems, resulting in
a well-defined geographic mosaic of coevolution
(13). Two frequently assumed misconceptions
arose from non-network analysis of coevolution:
first, that coevolution leads toward highly spe-
cific, direct one-on-one interactions; and second,
that coevolution within species-rich communities
generates diffuse assemblages that are intractable
to generalization. The documentation of geograph-
ically varying network motifs and the determina-
tion of well-defined structures of large networks
are dispelling these assumptions.

Architecture Influences Robustness
Without an understanding of the structure of eco-
logical networks, we cannot assess the robustness

of networks to species extinctions, habitat loss, or
other anthropogenic influences. Models of such
networks have led to the prediction that the ran-
dom extinction of species will result in coextinc-
tion cascades among remaining species because
of a loss of resources. In such simulations, food
webs are found to be robust to the random ex-
tinction of species, but rely on a few well-
connected species that act as glue keeping the
whole network together. If these key species dis-
appear, it is expected that the entire network will
collapse very rapidly (7, 15, 16).

Such simulations have looked specifically at
the number of species, but not at their identity.
The next step was to superimpose the phyloge-
nies of the plants and animals on the network of
interactions. Phylogenetic relatedness (for exam-
ple, species belonging to the same genera) partly
explains the patterns of interactions between spe-
cies (17). As a consequence, coextinction ava-
lanches tend to involve taxonomically related
species, which may lead to a nonrandom pruning
of the evolutionary tree and a faster erosion of
taxonomic diversity (17). Related to this, coex-

B

A

Fig. 1. The web of life is a powerful representation encapsulating ecological connectivity among
elements. Examples of ecological networks illustrate how to scale from pairwise interactions to the entire
assembly: (A) a plant-animal mutualistic network depicting the interactions of mutual benefit between
plants and their seed dispersers and (B) a network of spatial genetic variation across habitat patches in a
heterogeneous landscape inhabited by a Mediterranean plant. Studies such as (A) focus on coevolution at
a community scale and set the foundation for predicting how global change will propagate through such
networks. Studies such as (B) provide a framework to address the simultaneous influence of all patches on
gene flow and quantify the importance of a single patch for the persistence of the entire metapopulation.

www.sciencemag.org SCIENCE VOL 325 24 JULY 2009 417

SPECIALSECTION

C
RE

D
IT
:D

O
RL

IN
G

K
IN

D
ER

SL
E
Y/
G
ET

TY
IM

A
G
ES

 o
n 

Ju
ly 

24
, 2

00
9 

ww
w.

sc
ie

nc
em

ag
.o

rg
Do

wn
lo

ad
ed

 fr
om

 

http://www.sciencemag.org


tinction cascades in food webs tend to involve
species that are trophically unique; that is, that tend
to be eaten by a set of predators and/or eat a set of
prey with little overlap with other species in the
community (18). Therefore, trophic diversity—the
range of trophic roles played by species—
decreases faster than would be expected on the
basis of looking only at the number of coextinct
species (18). Future studies should now comple-
ment these simulations of coextinction cascades
by mapping the loss of ecosystem services that a
species performs (19), such as pollination or
biological control.

One topological way of simulating the con-
sequences of species extinction assumes that spe-
cies are fixed nodes without dynamics. The
alternative is to use population dynamic models
for each species. Traditionally, the dynamic ap-
proach has been performed with the most basic
descriptions of trophic interactions, such as a tri-
trophic food chain (Fig. 2A). These basic de-
scriptors of trophic interactions, known by
theoreticians as trophic modules, provide a bridge
between the complexity of entire communities and
the simplicity of pairwise interactions (20). Indeed,
trophic modules can be represented mathemati-
cally on the basis of the abundance of each species
and how each is affected by the abundance of
other species, which may be predators or prey.
However, there is still a wide gap between the
stability of these simple models of trophic inter-
actions and that of the entire food web.

To reduce such gaps, network motifs provide
a means by which to assess the most important
trophic modules on the basis of their relative fre-
quency within a food web. Modules that are over-
represented (motifs) tend to be most relevant to
understanding food web dynamics (9–11). How-
ever, we cannot assume that the stability of the
entire network can be deduced from the stability
of its component parts, because the sum of the
parts does not add up to a complete network.

Thus, we need studies to add to our comprehen-
sion of the stability of entire food webs.

Recently, ecologists have analyzed the dy-
namics of large foodwebmodels. Two ingredients
characterize these models. First, they incorporate
realistic interaction networks among dozens of
species occupying several trophic levels (6, 7).
Second, they use realistic estimates of species body
sizes and metabolic rates (21), in contrast with tra-
ditional Lotka-Volterra models, in which parame-
ters are assigned randomly. With these models,
researchers have explored the stabilizing role of
network properties, such as the observed body
size ratios between predators and their prey (12),
and predicted the effects of species removal on
the abundance of the remaining species (22). The
accuracy of these predictions increases with the
size of the food web, so that the more complex
the food web, the simpler the prediction of the
consequences of species extinctions (22).

Architecture Influences Network Size
Network structure can affect not only the ro-
bustness of a given network (at what rate bio-
diversity will be lost) but its original size (how
many species can be supported to begin with).
Extensions of theory testing the roles of compe-
tition and mutualistic interactions in determining
the maximum number of species that can stably
coexist (23) showed the potential increase in
species richness resulting from the architecture of
mutualistic networks. For any given number of
interactions, the nested structure of mutualistic
networks maximizes the number of coexisting
species (23). For example, two plant species that
compete to attract shared pollinators gain when
they coexist because more pollinators are at-
tracted to the area by the total number of available
flowers. In such cases, there is a balance between
the opposing forces of competition and facilita-
tion, which depends on the structure of the mu-
tualistic network (23).

To properly study the relationship of network
architecture to function, three challenges need to
be faced. First, models need to be developed
incorporating both how population dynamics af-
fect network topology and how topology affects
dynamics (6). Second, analyses of networks need
to incorporate multiple interaction types, because
it is probable that stability is related to how mul-
tiple interaction types function in combination
(23). This may be particularly relevant if mutu-
alistic and antagonistic effects are nonadditive,
because until now networks have primarily been
studied independently (24). Third, species inva-
sions, climate change, and other current chal-
lenges to ecological and environmental systems
will require a network focus because multiple
species are likely to be perturbed in face of the
many ongoing changes at both the local and
global scales (25). For example, mutualistic pol-
lination networks have demonstrated that such
networks appear to facilitate the integration of
invasive plant species and that the structure of the
network also seems to buffer the consequences of
such invasions (26).

Beyond Species Interactions
The application of networks in ecology is not
restricted to species interactions but can also be
applied to population dispersal across heteroge-
neous landscapes. For example, a node can be a
patch of available habitat, and a link connecting
two such patches can indicate the movement of
individuals or genes. As habitat modification trans-
forms continuous habitat into islands of disjointed
patches (Fig. 1B), the regional persistence of a
species inhabiting such a fragmented landscape
will be determined by the balance between local
extinction and migration among local patches
(27). Indeed, networks may be a simplified rep-
resentation of heterogeneous landscapes even in
cases where parametrizing demographic data is
not possible. The topology of these networks
provides information about the relative impor-
tance of individual patches to the overall land-
scape connectivity. For example, network theory
has been applied to the endangered Mexican
spotted owl by mapping the discrete patches of
original habitat as the nodes and using infor-
mation onmaximum dispersal distances to assess
whether two such patches are potentially linked.
This representation leads to the prediction that this
species will survive even if substantial habitat
transformation occurs, as long as a subset of the
network of habitat patches is preserved (28).

Additionally, such methods can be used to
visualize and analyze networks of genetic varia-
tion in space (Fig. 1B). Traditional approaches
use the summary of pairwise effects of one pop-
ulation on another, but the network approach
makes it possible to fully address the simulta-
neous influence of multiple local populations
in shaping genetic variability (29). Finally, when
network theory is applied to population biology,

A

Predator

Consumer

Resource

B C

Fig. 2. The basic building blocks of ecological networks. (A and B) Two trophic modules: a tri-
trophic food chain (A) and an omnivory chain (B), which have been the subject of dynamical
analyses. Some of these modules can be overrepresented in entire networks, in which case they are
considered network motifs (C). Future studies hopefully will assess to what extent the stability of an
entire network is explained by the stability of its basic blocks.
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it can address the inherent heterogeneity in who
meets whom. This application can be extended to
social networks as a way to estimate the spread of
disease (30) and the evolution of cooperation (31)
in heterogeneous societies.

Conclusions
Networks are useful descriptors of ecological
systems that can show the composition of and
interactions between multiple elements. The
application of networks to ecosystems provides
a conceptual framework to assess the conse-
quences of perturbations at the community level.
This may serve as a first step toward a more pre-
dictive ecology in the face of global environmen-
tal change. Networks are also able to introduce
heterogeneity into our previously homogeneous
theories of populations, diseases, and societies.
Finally, networks have allowed us to find gener-
alities among seemingly different systems that,
despite their disparate nature, may have similar
processes of formation and/or similar forces act-
ing on their architecture in order to be functional.
Although we have only begun to understand how
changes in the environment affect species inter-
actions and ecosystem dynamics through analyses
of simple pairwise interactions, network think-
ing can provide a means by which to assess key
questions such as how overfishing can cause
trophic cascades, or how the disruption of mutual-
isms may reduce the entire pollination service

within a community (25). As the flow of ideas
among seemingly unrelated fields increases (a
characteristic attribute of research on complex
systems), we envision the creation of more pow-
erful models that are able to more accurately
predict the responses to perturbations of food
webs, a major challenge for today’s ecologist.
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A General Framework
for Analyzing Sustainability of
Social-Ecological Systems
Elinor Ostrom1,2*

A major problem worldwide is the potential loss of fisheries, forests, and water resources.
Understanding of the processes that lead to improvements in or deterioration of natural resources
is limited, because scientific disciplines use different concepts and languages to describe and
explain complex social-ecological systems (SESs). Without a common framework to organize
findings, isolated knowledge does not cumulate. Until recently, accepted theory has assumed that
resource users will never self-organize to maintain their resources and that governments must
impose solutions. Research in multiple disciplines, however, has found that some government
policies accelerate resource destruction, whereas some resource users have invested their time and
energy to achieve sustainability. A general framework is used to identify 10 subsystem variables
that affect the likelihood of self-organization in efforts to achieve a sustainable SES.

The world is currently threatened by con-
siderable damage to or losses of many
natural resources, including fisheries,

lakes, and forests, as well as experiencing major
reductions in biodiversity and the threat of mas-
sive climatic change. All humanly used resources
are embedded in complex, social-ecological sys-

tems (SESs). SESs are composed of multiple
subsystems and internal variables within these
subsystems at multiple levels analogous to orga-
nisms composed of organs, organs of tissues,
tissues of cells, cells of proteins, etc. (1). In a com-
plex SES, subsystems such as a resource system
(e.g., a coastal fishery), resource units (lobsters),

users (fishers), and governance systems (orga-
nizations and rules that govern fishing on that
coast) are relatively separable but interact to
produce outcomes at the SES level, which in turn
feed back to affect these subsystems and their
components, as well other larger or smaller SESs.

Scientific knowledge is needed to enhance ef-
forts to sustain SESs, but the ecological and social
sciences have developed independently and do not
combine easily (2). Furthermore, scholars have
tended to develop simple theoretical models to
analyze aspects of resource problems and to pre-
scribe universal solutions. For example, theoretical
predictions of the destruction of natural resources
due to the lack of recognized property systems have
led to one-size-fits-all recommendations to impose
particular policy solutions that frequently fail (3, 4).

The prediction of resource collapse is sup-
ported in very large, highly valuable, open-access
systemswhen the resource harvesters are diverse,
do not communicate, and fail to develop rules and
norms for managing the resource (5) The dire
predictions, however, are not supported under con-
ditions that enable harvesters and local leaders to
self-organize effective rules to manage a resource
1Workshop in Political Theory and Policy Analysis, Indiana
University, Bloomington, IN 47408, USA. 2Center for the Study
of Institutional Diversity, Arizona State University, Tempe, AZ
85287, USA.

*E-mail: ostrom@indiana.edu

www.sciencemag.org SCIENCE VOL 325 24 JULY 2009 419

SPECIALSECTION

 o
n 

Ju
ly 

24
, 2

00
9 

ww
w.

sc
ie

nc
em

ag
.o

rg
Do

wn
lo

ad
ed

 fr
om

 

http://www.sciencemag.org

