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Abstract
In a context of global changes, and amidst the perpetual modification of community structure undergone

by most natural ecosystems, it is more important than ever to understand how species interactions vary

through space and time. The integration of biogeography and network theory will yield important results

and further our understanding of species interactions. It has, however, been hampered so far by the diffi-

culty to quantify variation among interaction networks. Here, we propose a general framework to study the

dissimilarity of species interaction networks over time, space or environments, allowing both the use of

quantitative and qualitative data. We decompose network dissimilarity into interactions and species turnover

components, so that it is immediately comparable to common measures of b-diversity. We emphasise that

scaling up b-diversity of community composition to the b-diversity of interactions requires only a small

methodological step, which we foresee will help empiricists adopt this method. We illustrate the framework

with a large dataset of hosts and parasites interactions and highlight other possible usages. We discuss a

research agenda towards a biogeographical theory of species interactions.
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INTRODUCTION

Integrating network theory to biogeography is among the most

important and exciting challenges that macroecologists are currently

facing (Cumming et al. 2010), yet the idea that species interactions

have a biogeographical structure of their own is often overlooked

(Beck et al. 2012). Achieving this integration is necessary to progress

towards understanding species interactions through time and space

(Kissling et al. 2011), and doing so to predict species geographical

distributions and their variations in an ever-changing world. While

the theoretical literature is progressing rapidly with this regard (e.g.

Leibold et al. 2004; Gravel et al. 2011a,b; Massol et al. 2011; Pillai

et al. 2011; Winegardner et al. 2012), the development of toolboxes

and methodological frameworks to describe the variation of species

interactions is in its infancy (Baselga 2010; Krasnov et al. 2011;

Poulin et al. 2011). We suggest that such methods can be developed

from the simple observation that local ecological networks are

strongly contingent on local species composition, the realisation of

their potential interactions and are drawn from a common regional

pool of both species and interactions (Holt 1996, Holt 2002).

Dunne (2006) coined this regional pool of species and their

potential interactions a metaweb. Understanding how local realisa-

tions relate to it paves the way to the development of a biogeo-

graphy of species interactions. Given the multiple drivers of local

community composition (species filtering, historical contingencies

and stochasticity), only a subset of species will be present at each

locality, thus potentially realising only a subsample (the a diversity)

of all the possible interactions found in the metaweb (the c diver-

sity; Fig. 1). For this reason, we call a local network drawn from a

regional metaweb a realisation. The metaweb can be reconstructed by

aggregating these local networks sampled at different times, in dif-

ferent localities or under different environmental conditions. Quan-

tifying to which extent realisation varies, both between themselves

and when compared to the metaweb, can bear important informa-

tions towards a better understanding of, at least, environmental

(Woodward et al. 2010) and human impacts (O’Gorman et al. 2012)

on network structure, especially as recent research highlighted how

knowing the food-web structure is key in predicting both the func-

tioning (Thébault & Loreau 2003) and the consequences of warm-

ing on functioning (Sarmento et al. 2010) in complex ecosystems. It

will also help address the relative influence of neutral (Krishna et al.

2008; Canard et al. 2012) vs. niche processes on species interactions

and the scaling of specialisation (Poulin et al. 2011). In addition,

because local communities are non-random samples from the regio-

nal species pool (Ricklefs 1987), the properties of local networks

will differ from the metaweb. Laying out this work is an important

task, as it will allow characterizing the diversity of interactions in

space, which is the first step in developing a predictive theory of

spatial food-web ecology (Gravel et al. 2011a,b).

Networks are made of nodes (species) linked by edges (ecological

interactions): both these objects can experience turnover over time

and space, and contribute to the dissimilarity between local

networks. Complexity arises from the fact that the occurrence of

interactions is not independent from species composition, as both
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of these objects can experience correlated or uncorrelated turnover

over time and space, and contribute to the dissimilarity between

local networks. Previous authors like Havens (1992) assumed that

species co-occurence was a sufficient condition for a potential

interaction to realise itself. Although it makes sense to view

co-occurence as a necessary condition for the occurrence of an

interaction, it is by no means a sufficient one (Allesina et al. 2008;

Olesen et al. 2011). Typically, even when they co-occur, species of

plants and pollinators may not interact because of phenological dif-

ferences (Vázquez 2005) or because one of them is rare (Canard

et al. 2012). Some other interactions may only be possible if a third

species, or interaction between other species, is present (see exam-

ples in Golubski & Abrams 2011; Poisot et al. 2011a), or when the

environment is favourable enough (Poisot et al. 2011b). This

explains why even simple experimental designs resulted in complex

patterns of network structure with major changes over an environ-

mental gradient (Poisot et al. 2011b). All of these mechanisms may

promote variation in network structure, even though there is little

to no variation in species composition. Quantifying the dissimilarity

of species interactions thus appears to be a more complex task than

it is for dissimilarity of community composition.

The challenge lies in finding a meaningful way to measure the

dissimilarity between interaction networks (Dale & Fortin 2010),

which will account for the turnover of both species and their inter-

actions. There were previous attempts at developing a methodology

for network comparison in ecology. Some methods allow the algo-

rithmic comparison of multiple networks in which no species are

found in common (Faust & Skvoretz 2002; Dale & Fortin 2010),

and are primarily concerned about the overall statistical properties

of networks. Similarly, some authors used multivariate analyses of

network metrics to estimate their level of similarity (e.g. Vermaat

et al. 2009; Baiser et al. 2011, , 2012), or statistically compared a

subset of metrics of interest (e.g. nestedness or modularity Flores

et al. 2011; Poisot et al. 2011b). These methods are primarily con-

cerned about the similarity of networks as mathematical objects (in

that they focus on network-wide, emergent properties, such as nest-

edness, connectance and so forth), and less about the similarity of

their ecology. Poisot et al. (2011b) proposed a method to evaluate

the amount to which interactions are gained or lost along environ-

mental gradients through pairwise network comparison, but this

method neglects possible changes in species loss or gain. However,

as local community composition is subjected to important variations

(see e.g. Koleff et al. 2003; Anderson et al. 2011), dissimilarity of

interaction networks needs to be partitioned between its composi-

tional and purely ‘interactive’ components (Canard 2011).

We set a framework for the measurement of pairwise network

dissimilarity, accounting both for species and interaction turnover

through space, time or along environmental gradients, which is gen-

eral enough to work on any type of network and accomodate any

b-diversity measure. This framework can be expanded to assess

multiple-network dissimilarity. We assess through simulations the

robustness of the framework to sampling effort. By applying this

framework on a robust dataset of host and ectoparasites networks,

we report no correlation between species b-diversity and interac-

tions b-diversity, suggesting that species and interactions can be

locally sorted through different mechanisms. We provide guidelines

for the interpretation of the results, and recommendations for the

sampling and reconstruction of networks through space or time.

THE DISSIMILARITY OF NETWORKS

Additive partitioning

Table 1 synthesises our partitioning of diversity. Differences in

interactions between networks (bWN ) originate from differences in

species composition (bST , dissimilarity in interaction structure intro-

duced by dissimilarity in species composition), and because shared

species between the two realisations may interact differently (bOS ,

Metaweb
1

2

3

Figure 1 Five species regional network (metaweb – on the right-hand side), with

two primary producers (squares), two consumers (circles) and one top predator

(triangle). Three local realisations (in the grey patches) are shown. The metaweb

can be built by integrating all the interactions at the largest possible scale.

Complexity stems from the fact that some interactions found in the metaweb

(i.e. between the white round and the white square species) may not occur at all

locations. Although it is easy to measure a and c diversities for the species

(s subscript) or interactions (i subscript), there is no available method to measure

the b-diversity of the later. We propose such an approach in this article.

Table 1 Synthetic view of the components of network dissimilarity. The contribution of species dissimilarity to the dissimilarity of networks is determined indirectly from

the fraction of network dissimilarity explained by species dissimilarity alone (bST )

Measure Definition Items Ref.

bS Dissimilarity in the species composition of communities Species identity e.g. Koleff et al. (2003)

bOS Dissimilarity of interactions established between species common to both realisations Interactions of shared species Canard (2011)

bWN Dissimilarity of interactions All interactions Canard (2011)

bST Dissimilarity of interactions due to species turnover Eqn 1 This study

b0OS Dissimilarity between a local network and its counterpart in the metaweb This study

bST =bWN Contribution of species dissimilarity to network dissimilarity This study

© 2012 Blackwell Publishing Ltd/CNRS
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dissimilarity of interactions in co-occuring species). This leads to an

additive view of network dissimilarity, wherein:

bWN ¼ bST þ bOS : ð1Þ
By definition, bWN and bST , but not bOS , will covary with the spe-

cies composition dissimilarity between networks (bS ). Given that

bOS (dissimilarity of interactions between shared species) is a com-

ponent of bWN , the inequality bOS � bWN is always satisfied, and

bST takes values between 0 (dissimilarity between two networks is

entirely explained by shared species interacting differently), and

bWN (the shared species interact in the same way, and all the differ-

ence between the two networks is explained by species turnover).

Because differences in network structure can arise either through

changes in species compositions or realised interactions, there is no

obvious analytical solution for bST , which is found by removing the

impact of dissimilarity of interactions on the total dissimilarity

between networks as indicated above.

Indices of network dissimilarity

We follow the widespread approach put forth by Koleff et al.

(2003) to measure network dissimilarity, which consists in a re-

expression of classical measures of disimilarity based on a partition

of shared and total items. Items (species, interactions etc.) found in

two realised networks A and B, are divided into three sets (c, b and

a) for which we measure the cardinality (number of members). This

information is summed up in a vector termed the ‘realisation mem-

bership’ M, which takes the following form:

M ¼ c ¼ kA 62 Bk; b ¼ kB 62 Ak; a ¼ kA \ Bk½ � ð2Þ
With this notation, c is the number of items (e.g. number of species,

or number of interactions) unique to realisation A, b the count of

items unique to realisation B and a the count of shared items,

meaning that c + b + a sums to the number of species (or interac-

tions) in the aggregation of the two networks. The definition of

‘items’ varies for each partition (Table 1). For bS , items are species

identity of the metaweb. For bOS , all species found only at realisa-

tions A or B are removed, so that the resulting A and B networks

have all their species in common; in this case, items are the remain-

ing interactions. For bWN , we do not remove remove unique spe-

cies at each realisation, so all interactions are taken into account

(the a component will have the same size as that in bOS , as shared

interactions necessitate shared species – thus, bOS is always a subset

of bWN ). We will illustrate this procedure using bw (Whittaker

1960) as the measure of dissimilarity. With a realisation membership

M as defined in eqn 2, dissimilarity is then measured by:

bwðMÞ ¼ a þ b þ c

ð2a þ b þ cÞ=2� 1 ð3Þ

Extension to multisite dissimilarity

Although different measures can be used to calculate dissimilarity

(including different ones for species and interactions dissimilarity, or

quantitative b-diversity measures like Bray–Curtis), the use of bw
seems desirable in the context of networks: this measure takes the

value of 1 when sets are perfectly non-overlapping, and a value of 0

in case of perfect overlap, which is a useful property to guide inter-

pretation (Faith et al. 1987) as it translates directly into a pairwise

distance between networks. In addition, this measure is easily

transposed into a multisite approach. Diserud & Odegaard (2007)

showed that the Sørensen measure of dissimilarity, expanded to T

sites having a regional richness (or number of interactions) ST , and

each site having a local richness n, is defined by

CT
S ¼ T

T � 1
1� STP

i ni

� �
; ð4Þ

and that it is possible to go back to bw through the simple transfor-

mation

bw ¼ T � CT
S T � 1ð Þ � 1 ð5Þ

To stay coherent with the notation of eqn 3, we express this last

result as bw � 1 ¼ ðT � 1Þ � ð1� CT
S Þ. When all species are

found at all sites, this takes the value of 0. When no species are in

common, this takes the value of T � 1. We thus range this mea-

sure, so that the value we report is bw � 1 ¼ 1 � CT
S .

It is thus possible to measure a bTWN and a bTS by counting,

respectively, the number of interactions and the number of species.

However, how to obtain bTOS under this framework will require

mathematical developments much beyond the conceptual frame-

work presented in this study. Pairwise, bOS requires to only look at

interactions between shared species. As the turnover of taxonomic

diversity will increase, we expect that the number of species com-

mon to all realisations will decrease, and using the interactions

between them to calculate the bTOS will result in much loss of reso-

lution. To circumvent this problem, we propose a different

approach to the across-site dissimilarity in multiple species interac-

tion networks in Appendix S1.

Theoretical examples

We use three simple realisations of the metaweb depicted in Fig. 1

to illustrate our framework. Despite their apparent simplicity, they

encompass all of the building blocks needed to construct the more

complex scenarios found in nature: networks can differs either

because species composition differ across samples, because shared

species interact in different ways or because of a combination of the

above; we illustrate these three cases in turn. Networks 1 and 2 dif-

fer in that network 1 has one more species than network 2, while

the interactions between shared species are similar. This configura-

tion results in bOSð1$2Þ ¼ bwð½a ¼ 2; b ¼ 0; c ¼ 0�Þ ¼ 0, and

bWN ð1$2Þ ¼ bwð½a ¼ 2; b ¼ 1; c ¼ 0�Þ ¼ 0:2: there is no interac-

tion dissimilarity for shared species, but the loss of the top predator

in network 2 triggers a difference in the whole-network dissimilarity.

Following eqn 1, we have bST ð1$2Þ ¼ 0:2, meaning that the

whole-network dissimilarity (bWN ) is explained by the difference in

species composition. Networks 2 and 3 differ in that, despite shar-

ing all of their species, network 3 has one supplementary interaction.

This results in bOSð2$3Þ ¼ bwð½a ¼ 2; b ¼ 1; c ¼ 0�Þ ¼ 0:2, and
bWN ð2$3Þ ¼ bwð½a ¼ 2; b ¼ 1; c ¼ 0�Þ ¼ 0:2. The network dis-

similarity is fully explained by different interactions between the two

realisations.

The difference between networks 1 and 3 is perhaps the most

likely situation to occur in nature, as it incorporates both causes of

dissimilarity (i.e. species and interactions turnover). Network 1 has

one more interaction than network 3 due to the presence of the

top predator, whereas network 3 has one more interaction than

network 1 due to the interaction between some shared species. This
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results in bOS ð1$3Þ ¼ bwð½a ¼ 2; b ¼ 1; c ¼ 0�Þ ¼ 0:2, and

bWN ð1$3Þ ¼ bwð½a ¼ 2; b ¼ 1; c ¼ 1�Þ � 0:33. From this, it

comes that bST ð1$3Þ � 0:11: the dissimilarity of network structure

has both a compositional and an interactive component. The rela-

tive influence of these components can be expressed in a more

intuitive way, by stating that the relative impact of compositional

difference is given by ðbST =bWN Þ � 100 ¼ 33%. This relatively

low value is explained by the fact that the unique species is a spe-

cialist (i.e. establishes only one interaction), and thus has a small

impact on the overall network structure. In addition, given that bST
is indirectly affected by bS , the relative importance of a variation in

the identity of species and interactions will differ in networks of dif-

ferent sizes and heterogeneity. As the networks in these examples

are unrealistically small, it is not worth reading too much into the

values of the different components; these examples are intended to

highlight how the framework functions.

These theoretical examples are easy to make sense of. Networks

2 and 3 are similar in terms of species composition, but not in

terms of interaction composition. Networks 1 and 2 are somehow

similar in terms of species compositon (and species compositions

between them are nested, Krasnov et al. 2011), and share all their

interactions between shared species. Their only difference stems

from one species being only present in network 1. Finally, networks

1 and 3 are the most dissimilar, with interactions differing between

shared species, and species composition differing. These simple

examples show how, by decomposing the dissimilarity of

whole-network structure (bWN ) into two additive components, one

compositional (bST ) and one interactive (bOS ), we are able to not

only express how much two networks are different, but also to pin-

point the source of this variation.

We can measure the multisite dissimilarity of these three example

networks, using our adaptation of the Diserud & Odegaard (2007)

method. The multisite species diversity is bTS ¼ 0:075. The multi-

site whole-network dissimilarity is bTWN ¼ 0:25. This result indi-

cates that, at the scale of the three sites, interactions experience

more turnover than species (which is intuited, given that the overlap

between the three patches is strong). Given that there is only one

species which is not shared between the three sites (the top preda-

tor unique to patch 1), it is possible to calculate bTOS without loos-

ing too much information. To do so, we calculate the network

dissimilarity by removing the top predator and its single interaction

both from patch 1 and from the total count of species/interactions.

This yields a value of bTOS ¼ 0:14, which indicates that the struc-

ture of interactions is rather well conserved, regionally. As for the

pairwise case, bTST is found by substraction, with bTST ¼ 0:11. The
last step of calculating bTOS can only be done if there are enough

species common to all realisations. Nonetheless, this simple example

shows how we can approach the multiple-site dissimilarity of spe-

cies interactions networks. We detail in Appendix S1 a method for

all situations, which additionally allows comparing multiple-site dis-

similarity between metawebs.

ROBUSTNESS TO SAMPLING EFFORT

One traditional obstacle in network studies is that accurately sam-

pling all interactions can be a daunting task: it is possible that some

interactions will not be detected because they are unfrequently

established, or because the species establishing them are rare, thus

more difficult to detect. An important number of methodological

advances were made to either come up with recommendations

about how to design the study (e.g. Berlow et al. 2004), or to

conceive metrics robust to sampling effort (e.g. Blüthgen et al. 2006;

Poisot et al. 2012). In addition to common issues related to the

sampling of interaction networks, working in the metaweb intro-

duces the need to account for two novel features: the size of local

realisations relative to the metaweb, and the exhaustivity with which

interactions were sampled in each realisation. Here, we test the

robustness of our new metrics of network dissimilarity to these two

issues. We do so by conducting simulations with a theoretical

reference metaweb of 50 species and connectance (the ratio of the

number of established interactions over the number of potential

interactions – with S species and L interactions, connectance is

L=S 2) of 0.3, generated using the classical niche model algorithm

(Williams & Martinez 2000).

The ratio of the realisation size compared to the metaweb is a con-

tingency that could affect network dissimilarity: just by chance alone,

two small realisations of a large metaweb are expected to have much

less species and interactions in common than large realisations. This

effect will be stronger for species-composition components than for

interaction components, provided that the consistency of interactions

between realisations is high. We therefore conducted a simple simu-

lation to assess the effect of the relative sizes of two realised net-

works on the components of network turnover. We did so by

varying the ratio of sizes between one large realisation of the meta-

web of fixed size S1 and one smaller realisation of varying size S2.

We express this ratio as DS ¼ log10ðS1=S2Þ. A DS of 0 means that

the two networks have the same size. We first draw from the meta-

web one random realisation of 40 species, with no unconnected

species. We then draw 1000 random realisations for each number of

species ranging from 4 to 40. We find that changes in relative realisa-

tion size do not affect the behavior of bOS , which is focused on

overlapping species (Fig. 2a). As bST is found by removing bOS from

bWN , it is as robust as these two measures are, and as such exhibits

the same reaction to the networks having different sizes.

A second issue with sampling networks is missing interactions

due to insufficient efforts (Martinez et al. 1999; Vázquez et al. 2007;

Dormann et al. 2009; Poisot et al. 2012). If interactions are

unequally sampled in different realisations, we would expect an

inflated bOS component, as networks will appear artificially more

dissimilar than they actually are. We simulated decreasing sampling

effort by randomly extracting two realisations from the metaweb

described above. For each of them, we removed a fixed number of

interactions at random, and measured the absolute error on estimat-

ing the dissimilarity of interactions based on the partial sampling.

The error is expressed as e ¼ ðX � X 0Þ2, where X and X 0 are

respectively the values of the dissimilarity component on the com-

pletely and partially sampled realisations. The situations ranged from

all interactions correctly sampled to 99% of the interactions missed.

For each probability of missing an interaction, 1000 replicates were

conducted. The results of this analysis are presented in Fig. 2b. We

find that our framework is robust to incomplete sampling as, even

when half of the interactions are missed (which is in itself an

already extreme scenario), bOS accumulates a total error equal to

5 � 10�2. In Appendix S2, we conduct simulations showing that

our framework performs equally well when both species and inter-

actions are not correctly sampled, provided that the sampling of

species is not too sparse (i.e. not sparser than the sampling of

interactions).
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DISSIMILARITY OF EMPIRICAL NETWORKS

Patterns of dissimilarity between parasitic communities

We analyse the spatial patterns of dissimilarity in parasitic interac-

tions obtained from 113 communities of small rodents from central

Europe (Stanko et al. 2002). These data are bipartite networks, but

our method can work indiscriminately on all types of networks.

Data were collected in central Europe over a period of 15 years. A

high proportion of species are found at several locations but experi-

ence high spatial turnover, thus making b-diversity analyses mean-

ingful between them. The metaweb is constructed by aggregating all

of the observed interactions, that is, whenever two species are

found to interact in at least one realisation, they are assigned one

interaction in the metaweb. Given that all networks were thoroughly

sampled at several times, we confidently assume that the metaweb

is a correct image of the interactions in the system (see the second

application). However, some pairs of species may potentially interact

given their traits, but as their environmental niches do not overlap,

they do not realise any interaction (Olesen et al. 2011).

We partition b-diversity between all pairs of sites. The results are

presented in Fig. 3. As expected, bWN increases with bS , e.g. when
the communities were increasingly dissimilar in terms of species

composition, the whole-network dissimilarity follows the same

trend. However, there is no clear pattern linking bS to bOS , which
is expected as this later component is focusing only on shared spe-

cies, and consequently eliminates compositional differences. This

result also shows that bOS conveys unique information to our

understanding of community structure. The contribution of species

turnover to network turnover, bST , increases strongly and linearly

with bS , which reinforces the importance of why species and inter-

actions turnover should be decomposed. This result should be

expected, as the more networks will become dissimilar in term of

species composition, the less differences in interactions between

shared species will be important. Finally, we observe that values of

bOS are consistently lower than values of bWN , as is intuitive given

that bWN is the total turnover in the network. These results empha-

sise that when attempting to compare networks in the light of how

a shared set of species interact, bOS carries more unique informa-

tion than bWN . Confronting panels a and b of Fig. 3 is convincingly

telling us why we should integrates species interactions into our

understanding of classical biogeography. Although the dissimilarity

in the whole-network structure (bWN ) increases with the dissimilar-

ity in the species compositions (bS ), the same is not true for the

dissimilarity of interactions established by shared species (bOS ). This
suggests that environmental filtering of species and interactions are

different, and the degree to which two networks vary with regard to

their species compositions is not a reliable predictor of the dissimi-

larity of interactions between shared species.

Test for the completeness of sampling

As previously mentioned, sampling all the species and interactions

in the metaweb is perhaps the core methodological issue. We use

an approach based on rarefaction curves (Gotelli & Colwell 2001;

Ricotta et al. 2012) to illustrate how a better understanding of net-

work dissimilarity can help to evaluate the completeness of sam-

pling. Each realisation of the metaweb is an independent sample.

We use a bootstrap approach to estimate how many interactions

and species were recovered at a given sampling effort (i.e. number

of realisations – 500 random draws were made per level of sampling

effort), by resampling the Stanko et al. (2002) dataset. For each level

of sampling effort n, we draw at random n realisations from the

pool of 113 realisations, and reconstruct a partial metaweb M0
n. We

then measure the different components of networks dissimilarity

between the empirical metaweb (i.e. as reconstructed from the inte-

gration of all the realisations) and the bootstrapped one, yielding an

indication of the degree of sampling completeness. We observe that

while the species rarefaction curve is reaching the saturation point

for species richness (Fig. 4a), meaning that most of the taxonomic

diversity was sampled, the number of interactions is still far from

the plateau (Fig. 4b). This last result indicates that some realised

interactions were not sampled, and that metaweb may not be

entirely exhaustive.

The evaluation of average network dissimilarity among realisations

is also useful to assess metaweb sampling quality. We evaluate two

important metrics of network structure, the connectance (number

of interactions relative to the size of the network) and nestedness

(the tendency of specialists to exploit a subset of the niche of more
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Figure 2 Results of the simulations. (a) Consequences of working on realisations

of different sizes. Changes in network size resulted in metrics interacted to

species composition dissimilarity increasing, but bOS is insensitive to this effect.

(b) Consequences of missing interactions during sampling. Both bOS and bWN

are extremely robust, and bS and bST are largely unaffected. After 1000

realisations, the standard deviation is extremely small, and for this reason is not

presented here.
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generalist species, Almeida-Neto et al. 2008), at the scale of the

metaweb, with increasing sampling effort. We find that while the

species and interactions are not all entirely sampled, the value of

these two metrics are correctly estimated when c. 30 realisations are

sampled (Fig. 4c). This result indicates that, although perfectly sam-

pling the metaweb can be an extremely daunting task, a satisfying

approximation of it structural properties can be quite easily

obtained. We propose that the metrics of dissimilarity described in

this article can directly be used to assess the completeness of meta-

web sampling. For each of the 500 replicates conducted for each

sampling effort, we reconstruct the metaweb and compare it to the

metaweb reconstructed with the 113 realisations (i.e. what is

assumed to be the most exhaustive knowledge of the metaweb). If

sampling is complete, we expect that all components of dissimilarity

will become asymptotically close to 0 as n increases. Indeed, if all

the interactions are correctly sampled, bringing in a new network

will not add to our knowledge of either species or interactions, and

the metaweb aggregated from a random pool of n � 1, n � 2,…
networks will not be different from the complete one aggregated

over the n samples. Should all the species and interactions have

been entirely sampled, the values of all the dissimilarity components

should be at 0 for high sampling efforts. As we show in Fig. 4d, we

find that whereas it is nearly the case for bS and bST , thus confirm-

ing the results of Fig. 4a, the values of bOS , and thus bWN , are still

steadily decreasing with each new sampled realisation, confirming

that not all the interactions are known.

POTENTIAL APPLICATIONS

Network structure is a key theme for numerous ecological topics,

including ecosystem stability (May 1972; Allesina & Pascual 2007;

Rooney & McCann 2012), functioning (Duffy 2002) and resilience to

exploitation or species extinction (Worm & Duffy 2003; Worm et al.

2006). It is therefore crucial to (1) understand how dissimilar interac-

tion networks are across environments, time and space (Link 2002),

and (2) predict how the structure of interactions will be affected by

global changes (Gilman et al. 2010), a task which is often overlooked

in favour of predicting species or traits loss (Bellard et al. 2012).

Meynard et al. (2011) highlighted the need to integrate the multiple

axes of biodiversity (a, b and c on one hand, and phylogenetic, taxo-

nomic and functional on the other), to optimise conservation strate-

gies. We propose that the same reasoning should be held for species

interactions, which would represent an additional level (i.e. in addition

to species themselves) at which diversity should be measured. The use

of b-diversity measures can, and should, go well beyond descriptive

or comparative objectives (Tuomisto 2011). For instance, recent

research showed that the combination of several diversity indices

offers deeper insights on community assembly dynamics and pro-

cesses (Münkemüller et al. 2012). Defining measures of network dis-

similarity would allow the same type of work to be carried out for

ecological networks. With such metrics in hand, one could investigate

drivers of variation in network structure: What is the role of phenol-

ogy in regulating network structure? How sensitive are interactions

β

β

β

β

β

β

β

β

(a) (b)

(c) (d)

Figure 3 Relationships between the partitions of diversity on all possible pairs between 113 networks. The dashed grey line indicates the 1:1 relationship.
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to particular environmental conditions? Is species turnover a good

predictor of network turnover?

Our framework offers the new opportunity to understand why

networks vary through space and time. We expect that the connec-

tance of the metaweb will be lower than the connectance of each

local network (realisation), as even a single occurrence of one

interaction will be reported into the metaweb (Gravel et al. 2011b).

We thus expect that as the proportion of rare interactions (inter-

actions occuring only in a few realisations) increases, local realisa-

tions will become increasingly dissimilar to the metaweb (high b0OS ;
Table 1). If the distribution of b0OS values for all the realisations is

biased towards high dissimilarities, then the proportion of rare inter-

actions would be high and species interactions strongly regulated by

local conditions. This would result in population dynamics and

selective pressure stemming for species interactions being geograph-

ically structured, which bears important consequences for evolution-

ary dynamics (Thompson 2005).

The distribution of b0OS can further be investigated for example,

spatial or temporal autocorrelation through an analysis of distance

decay (Nekola & White 1999; Morlon et al. 2008; Canard 2011).

Finally, understanding network variability can lead to an increased

understanding of ecosystem functioning. Several theoretical studies

highlighted that the structure of biotic interactions bears important

consequences for functioning (Thébault & Loreau 2003; Thébault

et al. 2007), and being able to compare interaction networks

between sites will offer the ability to understand why they differ in

functioning. This requires an expansion of our framework, from

pairwise comparisons to multiple-networks comparisons. In Appen-

dix S1, we propose a way to measure the variability across multiple

networks using their relative differences from the metaweb, and

provide ways to standardise these differences in a way allowing for

comparison across multiple systems.

CONCLUSIONS & FUTURE DIRECTIONS

A theoretical understanding of the biogeography of species interac-

tions will only be reached if we are able to generate sufficient data,

and analyse them with appropriate tools. The methodological tool-

box for assessing species b diversity is well developed, and we show

that translating it to networks is a relatively easy task, and one

which will yield promising results. The usefulness of these methods

will increase with a refinement of our understanding of the different

levels at which b diversity of species interactions networks should

be analysed.

As in the case of species diversity (Reiss et al. 2009), interaction

diversity can be qualified by its phylogenetic, functional and taxo-

nomical components. In this article, we only covered the taxonomi-

cal side. It is our intuition that most of the groundwork to describe

phylogenetic and functional b diversity with respect to interactions

is already laid out. In a taxonomical perspective, as presented in this

study, all species contribute equally to network dissimilarity, because

there is no way to rank them according to their biological distinctiv-
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Figure 4 Rarefaction curve-like approach to investigate the thoroughness of the metaweb sampling, using the Stanko et al. (2002) data. In all panels, the x-axis is the

number of networks used to reconstruct the metaweb (500 replicates for each level of sampling effort). (a) Number of unique species, both hosts and parasites, present

in the metaweb. (b) Number of unique interactions in the metaweb (number of interactions). (c) Mean, and standard deviation (grey lines), for nestedness (NODF/100) and

connectance of the metaweb. (d) Values of the dissimilarity components.
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ness. By accounting for functional traits, or phylogenetic related-

ness, species with rare functions or representing a unique evolution-

ary history should count more toward dissimilarity than common

species. Only some minor extrapolation seems to be needed to

come up with such measures for species interactions. Robust and

well-described measures of phylogenetic spatial diversity (Ives &

Helmus 2010; Morlon et al. 2011) have been developed in the

recent years. Similarly, studies focusing on the replacement of taxo-

nomically distinct species by functionally equivalent species (Dupont

et al. 2009; Dı́az-Castelazo et al. 2010) hint at the fact that functional

b diversity may be lower than its taxonomic counterpart. This effect

can be accentuated in community assembly following a disturbance,

as species traits matter more than species identity in the filling of

niche space (Helsen et al. 2012).

The need to integrate different measures of diversity to accurately

characterise ecological patterns is emphasised in several domains

(Münkemüller et al. 2012; Tuomisto 2012) and our framework is a

significant step forward in that direction. Although we laid out the

methodological work with this study, further understanding of the

processes acting on network structure through space is contingent

upon our ability to gather sufficient high-quality data. While it is

now easy, and tempting, to build on recent theoretical studies to

speculate about what a biogeographical theory of species interaction

would look like, it is our opinion that this reasoning would be bet-

ter grounded in data. As we show in Fig. 4, gathering enough net-

works to adequately describe the metaweb is a difficult task, and

assuming that species co-occurence is enough for an interaction to

happen is not a sufficient sampling strategy. For this reason, we

think it is time for the community of ecologists interested in inter-

action networks to engage in a discussion about the best way to

gather data from the field, as this will pave the way to a biogeo-

graphical theory of species interactions.
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