BIO 365 ecological networks

coordinators: Jordi Bascompte and Alessandro Vindigni

co-teachers: Matt Barbour, Rodrigo Cámara-Leret, Marília Gaiarsa, Klementyna Gawecka, Matt Hutchinson, Eva Knop, Fernando Pedraza

Introduction to course

			Thursday	Friday	F	Tuesday	Wednesday	Thursday	Friday	Tuesday	Wednesday	Thursday	Friday	Tuesday	Wednesday	Thursday
		I	March 17	March 18		March 22	March 23	March 24	March 25	March 29	March 30	March 31	April 1	April 5	April 6	April 7
From	То															
10:15	12:00	CTUR E	Outline and Intro	Food webs			Mutualistic networks	Null models	Statistical approaches		Spatial networks	Animal behaviour	Evolution in networks		Socio- ecological networks	Open time
	Speaker	TE (Bascompte	Gaiarsa			Bascompte	Bascompte	Barbour		Gawecka	Hutchinson	Pedraza		Cámara-Leret	office hours (with appointment)
12:00	13:00		Lunch			Lunch	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch	Lunch		Lunch	Lunch
	Lead	Е	Vindigni	Gaiarsa		Кпор	Gawecka	Pedraza	Barbour	Vindigni	Gawecka	Hutchinson	Pedraza		Cámara-Leret	Vindigni
13:00	17:00	EXERCIS	Toolkit for network analysis	Measuring modularity		Sampling an ecological network	Measuring nestedness	Null models	Statistical models	Assessing topological robustness	Comparing networks in space	Simulating foraging	Models of evolution in networks	Open time	Socio- ecological networks	Exam

outline of course

general readings

- Barabási, A.-L. (2002). Linked: The New Science of Networks. Perseus Books Group •
- Bascompte, J. and Jordano, P. (2013). Mutualistic Networks. Princeton University • Press
- Pascual, M. and Dunne, J.A. (2006). Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press
- Pimm, S.L. (1982). Food Webs. Chicago University Press •

general readings

course grading

- Written exam: multiple-choice test, up to two points.

• Practicals with web-based RStudio environment, up to three points.

Introduction to network theory

160 letters from Wichita (Kansas) and Omaha (Nebraska) to Sharon (Mass)

social networks

Milgram (1967)

In the Nebraska study, the chains varied between 2 and 10 intermediate acquaintances, with the median at 5

What a small world! El mundo es un pañuelo! C'est petit le monde! Die Welt ist klein!

social networks

Milgram (1967)

Erdös-Rényi model

protein networks

Number of links

Most real networks have the same internal structure Why? What are the implications?

preferential attachment

Rich get richer!

back to the small world

Increasing randomness

Watts and Strogatz (1998)

network robustness

Albert *et al.* (2000)

\$2\$703\$31529775 1.0

network robustness

Albert et al. (2000)

eradication in viruses

Pastor Satorras and Vespignani (2001)

а

Scale-free

sexually transmitted diseases

Absence of eradication thresholds in scale-free networks

Lijeros et al. (2001)

wrapping up: why networks?

- networks allow introducing heterogeneity into our previous homogeneous theories.
- networks put the focus on the patterns of interactions among elements.
- networks allow searching for commonalities among disparate systems.

current/future applications of network theory

PERSPECTIVE

Systemic risk in banking ecosystems

Andrew G. Haldane¹ & Robert M. May²

In the run-up to the recent financial crisis, an increasingly elaborate set of financial instruments emerged, intended to optimize returns to individual institutions with seemingly minimal risk. Essentially no attention was given to their possible effects on the stability of the system as a whole. Drawing analogies with the dynamics of ecological food webs and with networks within which infectious diseases spread, we explore the interplay between complexity and stability in deliberately simplified models of financial networks. We suggest some policy lessons that can be drawn from such models, with the explicit aim of minimizing systemic risk.

- rationale for prudential regulation."
- means of buttressing systemic resilience."

(I) Financial systems

• "Looking at financial risk through a network lens indicates a fundamentally different

• "In the United Kingdom, the new government have recently set up a Royal Commission to investigate the case for encouraging modularity and diversity in banking ecosystems, as a

SCIENTIFIC **Reports**

OPEN

Emergence of consensus as a modular-to-nested transition in communication dynamics

Received: 01 March 2016 Accepted: 28 December 2016 Javier Borge-Holthoefer^{1,2,3}, Raquel A. Baños³, Carlos Gracia-Lázaro³ & Yamir Moreno^{3,4,5}

"Our results show that collective attention around a topic is reached when the user-meme network self- adapts from a modular to a nested structure, which ultimately allows minimizing competition and attaining consensus."

(2) Social revolts

OPINION

Open Access

CrossMark 💭 An integrative approach for building personalized gene regulatory networks for precision medicine Monique G. P. van der Wijst[†], Dylan H. de Vries[†], Harm Brugge, Harm-Jan Westra and Lude Franke^{*} Disease SNP inter-individual variation in drug response driven by differences in each patient's gene regulatory networks

(3) Personalized medicine

the drug target gene activates the key driver gene

interaction between the drug target gene and the key driver gene is absent

