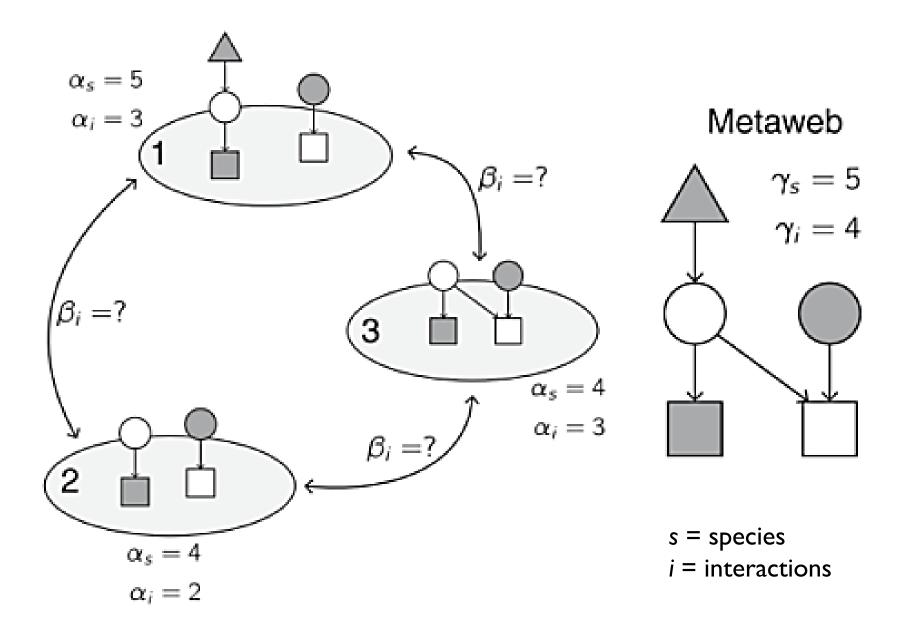

Comparing Networks in Space

Klementyna Gawecka

klementyna.gawecka@uzh.ch

BIO365 Ecological Networks March 2022

Species diversity



Alpha diversity of a community

> Beta diversity between communities

Gamma diversity of a region

Species and interactions diversity

Interaction β -diversity

dissimilarity of interactions differences in interactions between networks

> dissimilarity of interactions due to species turnover differences in interaction structure introduced by differences in species composition

 $\longrightarrow \beta_{WN} = \beta_{ST} + \beta_{OS}$

dissimilarity of interactions due to rewiring differences in interactions between co-occurring species

Poisot et al. (2012) The dissimilarity of species interaction networks. Ecology Letters

Interaction β -diversity

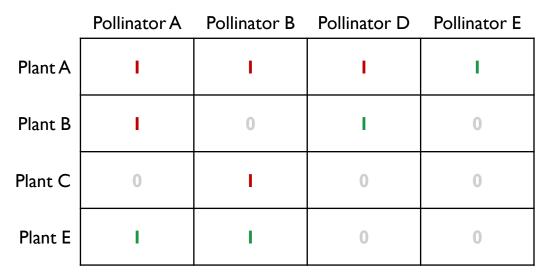
 β_{WN} and β_{OS} can be calculated using Whittacker's dissimilarity measure β_W :

$$\beta_W = \frac{a+b+c}{(2a+b+c)/2} - 1$$

a – number of interactions shared between two communities b – number of interactions unique to community ${\rm I}$

c – number of interactions unique to community 2

 β_{ST} is calculated as $\beta_{WN} - \beta_{OS}$


Poisot et al. (2012) The dissimilarity of species interaction networks. Ecology Letters

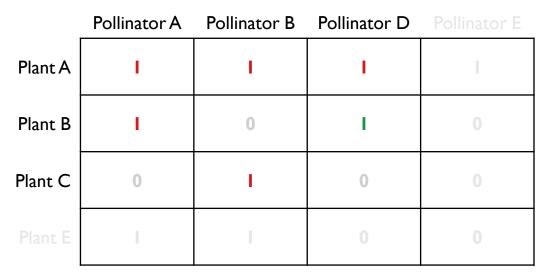
Example – β_{WN}

Network I

	Pollinator A	Pollinator B	Pollinator C	Pollinator D
Plant A	I	I	I	I
Plant B	-	H	0	0
Plant C	I	I	0	0
Plant D	I	0	0	0

Network 2

- a = 5 number of interactions shared between two communities
- b = 4 number of interactions unique to community I
- c = 4 number of interactions unique to community 2


$$\beta_{WN} = \frac{5+4+4}{(2\times5+4+4)/2} - 1 = 0.44$$

Example – β_{OS}

Network I

	Pollinator A	Pollinator B	Pollinator C	Pollinator D
Plant A	-	-		I
Plant B	I	I	0	0
Plant C	I	I	0	0
Plant D		0	0	0

Network 2

- a = 5 number of interactions shared between two communities
- b = 2 number of interactions unique to community I
- c = 1 number of interactions unique to community 2

$$\beta_{OS} = \frac{5+2+1}{(2\times5+2+1)/2} - 1 = 0.23$$

Example – β_{ST}

Network I

	Pollinator A	Pollinator B	Pollinator C	Pollinator D
Plant A	I	I	I	Ι
Plant B	I	I	0	0
Plant C	Ι	I	0	0
Plant D	I	0	0	0

Network 2

	Pollinator A	Pollinator B	Pollinator D	Pollinator E
Plant A	I	I	I	I
Plant B	I	0	I	0
Plant C	0	I	0	0
Plant E	I	I	0	0

 $\beta_{WN} = 0.44$

$$\beta_{OS} = 0.23$$

$$\beta_{ST} = \beta_{WN} - \beta_{OS} = 0.21$$