network robustness

Alessandro Vindigni alessandro.vindigni@ieu.uzh.ch

why should we care about network robustness?

1. network robustness and percolation transition

ecological networks

2. Molloy-Reed criterion

sexual contacts

3. what is relevant for ecology according to a physicist

network robustness and percolation transition

Cayley tree with k=3

Cayley tree

RND: random removal of nodes

MTL: from most connected to least connected

LTM: from least connected to most connected

honeycomb lattice

named after bees...

... but we think of Graphene

honeycomb lattice

RND: random removal of nodes

MTL: from most connected to least connected

LTM: from least connected to most connected

Erdos-Renyi graph

binomial degree distribution

Erdos-Renyi graph

RND: random removal of nodes

MTL: from most connected to least connected

LTM: from least connected to most connected

...discriminate

percolation theory

- f = probability of a site to be empty
- $f = 0 \Rightarrow$ all sites in the lattice are occupied
- $f = 1 \Rightarrow$ all sites in the lattice are empty
- P_{∞} = probability that an occupied a site belongs to the giant cluster

$$P_{\infty} = rac{C_{max}}{N}$$
 in the following

percolation is actually a critical phase transition

universality: the fact that critical exponents (like beta) only depends on few details of the systems, such as the dimensionality, the range of interactions between particles, the symmetry of the problem.

Nobel prizes related to phase transitions

- 1910 Johannes Diderik van der Waals
- 1962 Lev Davidovich Landau
- 1968 Lars Onsager
- 1977 Philip Warren Anderson, Nevill Francis Mott, John Hasbrouck Van Vleck
- 1982 Kenneth G. Wilson
- 1991 Pierre-Gilles de Gennes
- 2001 Eric Allin Cornell, Carl Edwin Wieman, Wolfgang Ketterle
- 2016 David J. Thouless, John M. Kosterlitz, F. Duncan M. Haldane
- 2021 Giorgio Parisi, Klaus Hasselmann, Syukuro Manabe

critical phase transitions in physics

percolation phase transition in networks

N = number of nodes in the network

$$P_{\infty} = rac{C_{max}}{N}$$
 is a good order parameter $y = rac{C_{max}}{N^{\Delta_c}}$ vs $x = rac{f - f_c}{N^{\Delta_f}}$ master curve

 Δ_c and Δ_f depend on the **topology** of the network

model	Δ_c	Δ_f
Erdos-Renyi	2/3	1/3
2D percolation	303/288	3/8

see e.g. Guimaraes, A.-L. (2020). Ann. Rev. Ecol. Evol. Syst. 51: 433-60

increasing the number of nodes N the transition gets progressively sharper and approaches the **2D percolation** result

increasing the number of nodes N the transition gets progressively sharper as expected for the **Erdos-Renyi graph**

(1995) M. Molloy, B. Reed, Random Struct. Algorithms 6, 161

valid for every random network

generally $\kappa(f)$ therefore we can define the critical threshold as $\kappa(f_c)=2$

in terms of the original distribution
$$\displaystyle ~f_c=1-rac{1}{\kappa-1}$$

$$Molloy-Reed criterion
valid for every random network
B: i connected te;
Bayes fine $P(A | B) = \frac{P(B | A) P(A)}{P(B)} = \frac{K}{N-1} \frac{N-1}{(K)} \frac{P(K)}{Adjacion cy Nbt}$

$$P(G-i) = P(B) = \frac{2}{(N-1)} \frac{1}{N-1} \frac{K}{N-1} \frac{1}{N-1} \frac{1}$$$$

valid for every random network

$$kappa = \begin{cases} k_i & k_i \\ N + & \langle k \rangle \end{cases} p(k_i) = \frac{\langle k^2 \rangle}{\langle k \rangle} \ge 2$$

in order for the Network to be connected.
$$kappa = \frac{\langle k^2 \rangle}{\langle k \rangle} \ge 2 \implies \text{Supercritical phase}$$

$$kappa = \frac{\langle k^2 \rangle}{\langle k \rangle} \ge 2 \implies \text{Supercritical phase}$$

$$kappa = \frac{\langle k^2 \rangle}{\langle k \rangle} \ge 2 \implies \text{Supercritical phase}$$

assess the ROBUSTNESS of a random network (R.S. ERgraph, scale free)

The

valid for every random network

Erdos-Renyi graph

$$P(k) = \binom{N-1}{k} p^k (1-p)^{N-1-k}$$

.

.

binomial degree distribution

property binomial distribution

$$\langle k^2 \rangle - \langle k \rangle^2 = \langle k \rangle \quad \Rightarrow \quad \langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$$

$$\kappa = \frac{\langle k^2 \rangle}{\langle k \rangle} = \langle k \rangle + 1 \ge 2 \quad \Rightarrow \quad \langle k \rangle \ge 1$$

known result

scale-free network

$$P(k) = Ck^{-\gamma}$$
 C generally depends on k_{min} and $k_{max} \sim N^{1/(\gamma-1)}$

in the limit
$$N \to \infty$$

$$\begin{cases} f_c \to 1 & \mbox{ for } 2 < \gamma \leq 3 \\ f_c < 1 & \mbox{ for } \gamma > 3 \end{cases}$$

valid for every random network

the **Molloy-Reed** criterion **fails** to predict the correct critical fraction; **2D percolation** is instead accurate

Molloy-Reed critical threshold in different models

suggested readings

Error and attack tolerance of complex networks

Réka Albert, Hawoong Jeong & Albert-László Barabási

Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA

Resilience of the Internet to Random Breakdowns

Reuven Cohen,^{1,*} Keren Erez,¹ Daniel ben-Avraham,² and Shlomo Havlin¹ ¹Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel ²Physics Department and Center for Statistical Physics (CISP), Clarkson University, Potsdam, New York 13699-5820 (Received 11 July 2000; revised manuscript received 31 August 2000)

A common property of many large networks, including the Internet, is that the connectivity of the various nodes follows a scale-free power-law distribution, $P(k) = ck^{-\alpha}$. We study the stability of such networks with respect to crashes, such as random removal of sites. Our approach, based on percolation theory, leads to a general condition for the critical fraction of nodes, p_c , that needs to be removed before the network disintegrates. We show analytically and numerically that for $\alpha \leq 3$ the transition never takes place, unless the network is finite. In the special case of the physical structure of the Internet $(\alpha \approx 2.5)$, we find that it is impressively robust, with $p_c > 0.99$.

Error and attack tolerance of complex networks

2.0

1.5

0.5

0

and <s>

Ś

Réka Albert, Hawoong Jeong & Albert-László Barabasi

Nature 406, 378-382 (2000).

In this paper, the error tolerance curves for the exponential network were affected by a software error. This did not impact the attack curves nor the measurements and conclusions regarding the error/ atack tolerance of scale-free networks, the World-Wide Web and the Internet. The corrected Figs 2a and 3a are shown below.

Taken from Barabási, A.-L. (2016). Network Science. Cambridge University Press.

how is this related to epidemic threshold of viruses?

what is relevant for ecology... ...according to a physicist

ecologically-driven removal of nodes

can we learn something about habitat restoration from physics?

1. are ecological networks really random?

2. what role play its finite size or the sampling efforts on assessing the robustness of an ecological network?

Thank you!

LEGENDA

$$N = \# = f$$
 nodes in a network (initial in simulation)
 $f = current \# d$ nodes during removal
 $f = 1 - \frac{n}{N}$ fraction removed nodes
 $C_{MAX} = Size \# Hu largest cluster
 $fe = critical fraction removed nodes
 $C_{MAX} \sim N^{Ac}$ Δ_c exponent
 N^{Af} Δf exponent
 $N = \frac{4 - fc}{N^{Af}}$ horizontal variable of
 f the master curve
 $y = \frac{C_{MA}}{N^{A}}$ vertical variable of
 f^{A} the mester curve
 $\psi = \frac{C_{MA}}{N^{A}}$ degree of the network
 $k^{2} = average degree of the network$
 $N.B.$ both $c k > \& c k^{2} > can be completed
with Ae initial degree distribution
 $as in f c = 1 - \frac{1}{taga - 1}$
 OR with the current degree distribution
 $(e.s., df + hc - 100)$$$$