Comparing Networks in Space

Klementyna Gawecka

klementyna.gawecka@uzh.ch

BIO365 Ecological Networks April 2024

Species diversity

Species and interactions diversity

Interaction β -diversity

dissimilarity of interactions differences in interactions between networks

> dissimilarity of interactions due to species turnover differences in interaction structure introduced by differences in species composition

 $\longrightarrow \beta_{WN} = \beta_{ST} + \beta_{OS}$

dissimilarity of interactions due to rewiring differences in interactions between co-occurring species

Poisot et al. (2012) The dissimilarity of species interaction networks. Ecology Letters

Interaction β -diversity

 β_{WN} and β_{OS} can be calculated using Whittaker's dissimilarity measure β_W :

$$\beta_W = \frac{a+b+c}{(2a+b+c)/2} - 1$$

a – number of interactions shared between two communities b – number of interactions unique to community I

c – number of interactions unique to community 2

 β_{ST} is calculated as $\beta_{WN} - \beta_{OS}$

Poisot et al. (2012) The dissimilarity of species interaction networks. Ecology Letters

Example – β_{WN}

POLLINATORS

		Α	В	С	D
PLANTS	A	I	I	I	I
	В	I	I	0	0
	С	I	I	0	0
	D	I	0	0	0

Network 2

		POLLINATORS			
		Α	В	D	Е
PLANTS	A	I	I	I	I
	B	I	0	I	0
	С	0	I	0	0
	Е	I	I	0	0

Example – β_{WN}

- a = 5 number of interactions shared between two communities
- b = 4 number of interactions unique to community I
- c = 4 number of interactions unique to community 2

$$\beta_{WN} = \frac{5+4+4}{(2\times5+4+4)/2} - 1 = 0.44$$

Example – β_{OS}

POLLINATORS

		Α	В	С	D	
PLANTS	A	I	I	_	I	
	В	I	I	0	0	
	С	I	I	0	0	
	D		0	0	0	

Network 2

		POLLINATORS			
		Α	В	D	Е
PLANTS	A	I	I	I	
	В	I	0	I	0
	С	0	I	0	0
	Е			0	0

Example – β_{OS}

Network 2

- a = 5 number of interactions shared between two communities
- b = 2 number of interactions unique to community I
- c = 1 number of interactions unique to community 2

$$\beta_{OS} = \frac{5+2+1}{(2\times5+2+1)/2} - 1 = 0.23$$

Example – β_{ST}

POLLINATORS С Α В D Α PLANTS В 0 L 0 С 0 0 н D 0 0 0

Network 2

 $\beta_{WN} = 0.44$

$$\beta_{OS} = 0.23$$

 $\beta_{ST} = \beta_{WN} - \beta_{OS} = 0.21$