Measuring Nestedness

Klementyna Gawecka
BIO365 Ecological Networks
klementyna.gawecka@uzh.ch
March 2023

Bipartite networks

Adjacency matrix:

$$
A=\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 5 \\
& 6 \\
& 7 \\
& 8
\end{aligned}
$$

Incidence matrix:

$$
\begin{aligned}
\left.\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned} \begin{aligned}
& 5 \\
& 6 \\
& 7 \\
& 8
\end{aligned} \quad B_{i, j}=\left\{\begin{array}{ll}
1 & \text { if node i and node } \mathrm{j} \text { are connected } \\
0 & \text { otherwise }
\end{array}\right]
$$

Bipartite networks

X
Y
n_{x} - number of nodes in set X (rows)
n_{y} - number of nodes in set Y (columns)
m - number of edges in the graph

Connectance C of a bipartite networks is given by:

$$
C=\frac{m}{n_{x} n_{y}}
$$

Two sets (groups) of nodes (X and Y). There are only connections between nodes that do not belong to the same set.

Nestedness

Sort columns and rows of the incidence matrix by the degrees of the nodes:

A network is nested, if for both groups X and Y :
I) there are nodes with many interactions (generalists) and nodes with a few interactions (specialists)
2) the nodes with few interactions share the interactions with the nodes with many interactions

Calculating nestedness - Fortuna et al. (2019)

The overlap $o_{i j}$ between two nodes i and j (from the same group) is the fraction of interactions of the node with the smaller degree that are shared by the node with the larger degree.

$$
o_{i j}=\frac{c_{i j}}{\min \left(k_{i}, k_{j}\right)}
$$

$c_{i j}$ - the number of interactions node i and j share

$$
c_{i j}=\sum_{k=1}^{n_{y}} B_{i, k} B_{j, k} \quad \text { (for rows) }
$$

Example: overlap between node 5 and node 8 is:

$$
o_{5,8}=\frac{3}{\min (7,4)}=\frac{3}{4}
$$

Calculating nestedness - Fortuna et al. (2019)

Step I: calculate the overlap of all pairs of rows

Step 2: calculate the overlap of all pairs of columns

$$
\sum_{i=1, i<j}^{n_{y}} o_{i j}
$$

Calculating nestedness - Fortuna et al. (2019)

Step 3: calculate nestedness N of the network - the average overlap of all pairs of rows and all pairs of columns:

$$
N=\frac{\sum_{i=1, i<j}^{n_{x}} o_{i j}+\sum_{i=1, i<j}^{n_{y}} o_{i j}}{\frac{n_{x}\left(n_{x}-1\right)}{2}+\frac{n_{y}\left(n_{y}-1\right)}{2}}
$$

N has values between 0 (not nested) and I (perfectly nested).

