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24FS BIO365 Ecological Networks
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Course grading

 Practical sessions (RStudio, report, and short-talks): up to 3 points

» Single-choice test sessions: up to 2 points




Marriage network in Florence 15th century
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Paul Erdos... and his number
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Graph theory and network science

(random) graph network
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graph = mathematical structure

degree = number of links that a given node has to other nodes

Network science combines theoretical results from graph theory with the analysis of empirical data
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Phases of matter from the perspective of network science

solid liquid gas

2




Phases of matter from the perspective of network science

solid liquid gas
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Phases of matter from the perspective of network science

solid liquid gas
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Phases of matter from the perspective of network science
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Phases of matter from the perspective of network science

solid liquid gas
819
(82

no rewiring rewiring no link

* information (sound) and energy (heat) propagate differently in the different phases

ou 0 u

» once we have defined the network of interactions we can model the propagation, e.g., of energy: — — o——
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From Physics to Network Science
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* |[n network science the concept of lattice somewhat dissolves but a distance between notes can can still defined

 Phases of networks can still defined in terms of connectivity between nodes (giant component)

* Equations of population dynamics or epidemiology can be defined using networks as support,
for instance Lotka-Volterra or coevolution (see Subhendu’s or Leandro’s lecture)



from empirical networks
to
models
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* This is how one builds empirical genetic networks (see Miguel’s lecture)

* Removing links progressively is a way to assess network robustness

* In empirical ecological networks we do not record all the actual interactions among species but just those that we are able to detect

The way we establish links defines the network
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Links In ecological networks

4;

i 10722757

[ o vaes
AN 2

t those that we are able to detect

jus

IONS among species

teract

In empirical ecological networks we do not record all the actual
but

N



From an edge list to a degree distribution

studentl * student2

Mauro Miro
Mauro Tongying
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Mauro L In the process of associating an empirical network to a chosen model

Mauro Remo . . . . L,

o Melisa necessarily we lose information about some details the original network
Laura Mauro

Laura Henry James

Laura Michael

Laura Timothy

1. Configuration model

Given a network with N nodes, L links and degree sequence (k1, ks, ... kn)
this model is defined as the possible random rewiring of the network compatible with the same degree sequence
The probability of occurrence of a link between two specified nodes/and is
ik,
2L — 1

Pij

2. Degree distribution

Let nx be the number of nodes with degree £ we define the frequency Pj, =

Nk
2k Tk
to which a probability distribution can be associated P (k)



Erdos Renyi model

Most nodes have
the same number of links

No highly
connected nodes

V

Number of links (&)

both (k) and (k?) are finite

Degree distributions

Scale free network
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(k) finite and (k) infinite

for most realistic networks 2 < v < 3



Preferential attachment produce scale-free networks

rich get richer
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what do we learn
from models



Moments of the degree distributions and robustness

Erdos Renyi model

Py = ()t py
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How is this related to epidemic threshold of viruses?
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How is this related to epidemic threshold of viruses?

Absorbing
phase

ViZus death

Active phase
Finite prevalence

Erdos Renyi

Pastor Satorras and Vespignani (2001)

Scale-free



That explains why sexually transmitted diseases are difficult to eradicate
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wrapping up:
why the network approach?
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“Chemistry”

node-level metrics

From edge list to Chemistry/Physics

solid

“phase of matter”

“crystal structure”

degree distribution

P(k)
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network-level metrics
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node-level metrics
e.g., Centrality

Q: How much more connected was the Q: Which species play a keystone
Medici family than the Pazzi family? role in a given ecosystem?
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network-level metrics
e.g., critical fraction

Q: How many species

Q: How many routers can stop working till . . 5
the functionality of internet is affected? a) can go extinct till an ecosystem collapses”
' b) should be reintroduced to restore an ecosystem?
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network-level metrics
e.g., critical fraction

Q: How many routers can stop working till Q: How many species

. . . . a) can go extinct till an ecosystem collapses?
?
the functionality of internet is affected: b) should be reintroduced to restore an ecosystem?
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Modeling always implies some degree of randomization, namely loss of details
=> network properties can be related to features of the degree distribution

: 1 [(k2) — (k)]

%) C =
w1 N (k)3

critical fraction f. =1 network-level centrality
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