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Marriage network in Florence 15th century

3.4 DATA FROM ARCHIVAL OR THIRD-PARTY RECORDS  

An increasingly important, voluminous, and often highly reliable source of social network data is 
archival records. Such records are, sometimes at least, relatively free from the vagaries of human 
memory and are often impressive in their scale, allowing us to construct networks of a size that 
would require far more effort were other techniques used. 

 

Figure 3.3: Intermarriage network of the ruling families of Florence. In this network the 
vertices represent fifteenth century Florentine families and the edges represent ties of marriage 
between them. After Padgett and Ansell [259]. 
  

A well-known small example of a study based on archival records is the study by Padgett and 
Ansell of the ruling families of Florence in the fifteenth century [259]. In this work, the 
investigators looked at contemporaneous historical records to determine which among the families 
had trade relations, marriage ties, or other forms of social contact with one another. Figure 3.3 
shows one of the resulting networks, a network of intermarriages between 15 of the families. It is 
notable that the Medici family occupies a central position in this network, having marriage ties 
with members of no fewer than six other families. Padgett and Ansell conjectured that it was by 
shrewd manipulation of social ties such as these that the Medici rose to a position of dominance in 
Florentine society. 

In recent years, with the widespread availability of computers and online databases, many more 
networks have been constructed from records of various types. A number of authors, for example, 
have looked at email networks [103, 313]. Drawing on email logs—automatic records kept by 
email servers of messages sent—it is possible to construct networks in which the vertices are 
people (or more correctly email addresses) and the directed edges between them are email 
messages. Exchange of email in such a network can be taken as a proxy for acquaintance between 
individuals, or we may be interested in the patterns of email exchange for some other reason. For 

 

 

 



Paul Erdos… and his number



Graph and Network Theory for the Analysis of Criminal Networks 149

(a)

(b)

Fig. 1 Dataset Description. The colours represent different clans: darker nodes are the “Mistretta”
family; in grey the “Batanesi” clan is drawn; white and light gray circled nodes and for two others
Mafia families not directly involved in the current investigation. All circled nodes represent the
bosses. Lastly, white nodes represent other subjects not classifiable in any of the previous categories.
Edges’ width depends on the number of meetings or phone calls, while the nodes size relates with
their degree. (Reproduced from Ficara et al. 2020)

4.2 Weight Distribution Analysis

Figure2 shows theweight distribution of theMeetings and thePhone Calls networks.
As already mentioned, the weights represent the amount of meetings and phone calls
exchanged between pairs of individuals in the networks, respectively.

It is noteworthy that in both these networks there are just a few high-weight edges;
i.e., nodes incident on those links exhibit an high number of interaction within the

criminal network 

sexually transmitted diseases

Lijeros et al. (2001)

Absence of eradication thresholds in 
scale-free networks

protein networks

ecological networks 

I there anything in the network approach besides the colorful representation? 



Graph theory and network sciencesexually transmitted diseases

Lijeros et al. (2001)

Absence of eradication thresholds in 
scale-free networks

network(random) graph

vertex 

edge 

node 

link 

degree = number of links that a given node has to other nodes

graph = mathematical structure

Network science combines theoretical results from graph theory with the analysis of empirical data 



Phases of matter from the perspective of network science
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Phases of matter from the perspective of network science
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Phases of matter from the perspective of network science

A2A1 A3

A12

A32

A2
A3

A16

A50

solid liquid gas

A2
A3

A14

A28



Phases of matter from the perspective of network science
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no rewiring rewiring no link

• information (sound) and energy (heat) propagate differently in the different phases 


• once we have defined the network of interactions we can model the propagation, e.g., of energy:
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From Physics to Network Science

• In network science the concept of lattice somewhat dissolves but a distance between notes can can still defined  

• Phases of networks can still defined in terms of connectivity between nodes (giant component)

• Equations of population dynamics or epidemiology can be defined using networks as support, 
for instance Lotka-Volterra or coevolution (see Subhendu’s or Leandro’s lecture)

5.3.1 FOOD WEBS  

The biological organisms on our planet can be divided into ecosystems, groups of organisms that 
interact with one another and with elements of their environment such as sources of material, 
nutrients, and energy. Mountains, valleys, lakes, islands, and larger regions of land or water can all 
be home to ecosystems composed of many organisms each. Within ecological theory, ecosystems 
are usually treated as self-contained units with no outside interactions, although in reality perfect 
isolation is rare and many ecosystems are only approximately self-contained. Nonetheless, the 
ecosystem concept is one of significant practical utility for understanding ecological dynamics. 

A food web is a directed network that represents which species prey on which others in a given 
ecosystem.40 The vertices in the network correspond to species and the directed edges to predator-
prey interactions. Figure 5.8 shows a small example, representing predation among species living 
in Antarctica. There are several points worth noticing about this figure. First, notice that not all of 
the vertices actually represent single species in this case. Some of them do—the vertices for sperm 
whales and humans, for instance. But some of them represent collections of species, such as birds 
or fish. This is common practice in the network representation of food webs. If a set of species 
such as birds all prey upon and are preyed on by the same other species, then the network can be 
simplified by representing them as a single vertex, without losing any information about who preys 
on whom. Indeed, even in cases where a set of species only have mostly, but not exactly, the same 
predators and prey we still sometimes group them, if we feel the benefits of the resulting 
simplification are worth a small loss of information. A set of species with the same or similar 
predators and prey is sometimes referred to as a trophic species. 
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The way we establish links defines the network

• In empirical ecological networks we do not record all the actual interactions among species but just those that we are able to detect

• This is how one builds empirical genetic networks (see Miguel’s lecture)

• Removing links progressively is a way to assess network robustness



In empirical ecological networks we do not record all the actual 
interactions among species but just those that we are able to detect

Links in ecological networks



From an edge list to a degree distribution 

In the process of associating an empirical network to a chosen model 
necessarily we lose information about some details the original network  

1. Configuration model 

(k1, k2, . . . kN )
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Given a network with N nodes, L links and degree sequence 

this model is defined as the possible random rewiring of the network compatible with the same degree sequence

The probability of occurrence of a link between two specified nodes i and j is 

pij =
kikj

2L� 1
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2. Degree distribution 

to which a probability distribution can be associated  P (k)
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Let        be the number of nodes with degreenk
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k
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we define the frequency Pk =
nkP
k nk
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In summary the key difference between a random and a scale-free 
network comes in the different shape of the Poisson and of the power-law 
function: in a random network most nodes have comparable degrees and 
hence hubs are forbidden. Hubs are not only tolerated, but are expected in 
scale-free networks Fig. 4.5.

The more nodes a scale-free network has, the larger are its hubs. The 
hubs grow polynomially with the network size, hence their size can be con-
siderable in large networks. In contrast in a random network the size of the 
largest node grows logarithmically or slower with N, implying that hubs 
will be tiny even in a very large network.

THE SCALE FREE PROPERTY HUBS11

Left column: the degrees of a random network 
follow a Poisson distribution, which is rather 
similar to the Bell curve shown in the figure. 
This indicates that most nodes have compara-
ble degree. Hence nodes with a large number 
of links are absent (top panel). Consequently 
a random network looks a bit like a national 
highway network in which nodes are cities 
and links are the major highways connecting 
them (bottom panel). Indeed, there are no ma-
jor cities with hundreds of highways and no 
city is disconnected from the highway system. 

Right column: In a network with a power-law 
degree distribution most nodes have only a 
few links. These numerous small nodes are 
held together by a few highly connected hubs 
(top panel). Consequently a scale-free net-
work looks a bit like the air-traffic network, 
whose nodes are airports and links are direct 
flights between them. Most airports are tiny, 
with only a few flights linking them to other 
airports. Yet, we can also have few very large 
airports, like Chicago or Atlanta, that hold 
hundreds of airports together, acting as major 
hubs (bottom panel). 

Once hubs are present, they change the way 
we navigate the network. For example, if we 
travel from Boston to Los Angeles by car, we 
must drive through many cities (nodes). On 
the airplane network, however, we can reach 
most destinations via a single hub, like Chica-
go.

After [4].

Figure 4.6
Random versus scale-free networks
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work under attack. To do this we rely on the fact that hub removal 
changes the underlying network in two different ways [9]:

•  It changes the maximum degree of the network from kmax to k'max as all 
nodes with degree larger than  k'max have been removed.

•  The degree distribution of the network changes from pk to  p'k', as all 
nodes connected to the removed hubs will loose links, altering the de-
grees of the remaining nodes.

In ADVANCED TOPICS 8.E we combine these two changes and map the 
attack problem into the robustness problem discussed in the previous sec-
tion. In other words, we can view an attack as random node removal from 
a network with adjusted k'max and p'k'. The calculations predict that the crit-
ical threshold fc for attacks on a scale-free network with degree exponent Ȗ�
is the solution of the equation [9, 10].

Fig. 8.12 shows the numerical solution of Eq. 8.12 in function of Ȗ, leading 
to several conclusions:

•  While fc for failures decreases monotonically with Ȗ, fc for attacks has 
a complex non-monotonic behavior.

•  fc for attacks is always smaller than fc for random failures.

•  For large Ȗ a scale-free network behaves like a random network. As 
a random network lacks hubs, an attack on a random network will 
follow a scenario similar to random node removal. Numerical sim-
ulations support this expectation: Fig. 8.13 shows that a random net-
work has a finite percolation threshold under both random failures 
and attack. The main difference is that fc for attacks is lower than fc 
for random failures.

•  The failure and the attack thresholds converge to each other for large 
Ȗ. Indeed, if Ȗ ĺ ∞ then pk ĺ į(k − kmin), meaning that all nodes have 
the same degree kmin. Therefore random failures and targeted attacks 
become indistinguishable in the Ȗ ĺ ∞ limit, when fc ̹  1 − 1/(kmin − 1).

The airport analogy helps us understand the fragility of scale-free net-
works to attacks: the closing of two hub airports, like Chicago’s O’Hare 
Airport or the Atlanta International Airport for only a few hours would 
be headline news, altering travel throughout the US. Should some se-
ries of events lead to the simultaneous closure of the Atlanta, Chicago, 
Denver, and New York airports, the biggest hubs, air travel within the 
U.S. would come to a halt within hours.

In summary, while random node removal has difficulty fragmenting 

(8.12)

The probability that a node belongs to the 
largest connected component in a scale-free 
network under attack (red) and under ran-
dom failures (green). In the case of an attack 
the nodes are removed in a decreasing order 
of their degree: we first remove the biggest 
hub, followed by the next biggest and so on. 
In the case of failures, the order in which the 
nodes are chosen is random, independent of 
the node’s degree. The plot illustrates the net-
work’s extreme fragility to attacks: fc is rather 
small, implying that the removal of only a few 
hubs can disintegrate the network. The initial 
network has a degree exponent ਠ�= 2.5, kmin = 2 
and N = 10, 000.

Figure 8.11

Scale-free networks under attack

NETWORK ROBUSTNESS

fc
2��
1�� = 2 + 2 � �

3� �
kmin ( fc

3��
1�� �1).

The dependence of the critical probability, fc, 
on the degree exponent ਠ, for scale-free net-
works with kmin = 2, 3, as predicted by Eq. 8.12, 
for an attack (red curves) and by Eq. 8.7 for 
random failures (green curves). Note that Eq. 
8.12 predicts that the attack threshold fc ĺ 0 
for kmin = 2 and fc ĺ�1/2 for kmin = 3, in line with 
the behavior observed in the figure.

Figure 8.12

Critical threshold under attack
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a scale-free network, an attack that targets the hubs can easily destroy a 
network. This fragility is bad news for the Internet, as it indicates that it 
is inherently vulnerable to deliberate attacks. It can be good news in med-
icine, as the vulnerability of bacteria to the removal of its hub proteins of-
fers avenues to design drugs that target these hubs, potentially destroying 
the organism.

NETWORK ROBUSTNESS

The fraction of nodes that belong to the gi-
ant component in a random (i.e. ErdĘs-Rényi) 
network if an f fraction of nodes are removed 
randomly (random failure, green) and in de-
creasing order of their degree (attacks, red). 
Both curves indicate the existence of a finite 
threshold, in contrast with scale-free net-
works, for which fcĺ 1 under random failures. 
The simulations were performed for random 
networks with N = 10, 000 and ࢭk3 = ࢮ.

Figure 8.13

Attack and failures in random networks
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Pastor Satorras and Vespignani (2001)
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That explains why sexually transmitted diseases are difficult to eradicate 
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3.4 DATA FROM ARCHIVAL OR THIRD-PARTY RECORDS  

An increasingly important, voluminous, and often highly reliable source of social network data is 
archival records. Such records are, sometimes at least, relatively free from the vagaries of human 
memory and are often impressive in their scale, allowing us to construct networks of a size that 
would require far more effort were other techniques used. 

 

Figure 3.3: Intermarriage network of the ruling families of Florence. In this network the 
vertices represent fifteenth century Florentine families and the edges represent ties of marriage 
between them. After Padgett and Ansell [259]. 
  

A well-known small example of a study based on archival records is the study by Padgett and 
Ansell of the ruling families of Florence in the fifteenth century [259]. In this work, the 
investigators looked at contemporaneous historical records to determine which among the families 
had trade relations, marriage ties, or other forms of social contact with one another. Figure 3.3 
shows one of the resulting networks, a network of intermarriages between 15 of the families. It is 
notable that the Medici family occupies a central position in this network, having marriage ties 
with members of no fewer than six other families. Padgett and Ansell conjectured that it was by 
shrewd manipulation of social ties such as these that the Medici rose to a position of dominance in 
Florentine society. 

In recent years, with the widespread availability of computers and online databases, many more 
networks have been constructed from records of various types. A number of authors, for example, 
have looked at email networks [103, 313]. Drawing on email logs—automatic records kept by 
email servers of messages sent—it is possible to construct networks in which the vertices are 
people (or more correctly email addresses) and the directed edges between them are email 
messages. Exchange of email in such a network can be taken as a proxy for acquaintance between 
individuals, or we may be interested in the patterns of email exchange for some other reason. For 

 

 

 

Q: How much more connected was the 
Medici family than the Pazzi family?

Q: Which species play a keystone 
role in a given ecosystem?
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work under attack. To do this we rely on the fact that hub removal 
changes the underlying network in two different ways [9]:

•  It changes the maximum degree of the network from kmax to k'max as all 
nodes with degree larger than  k'max have been removed.

•  The degree distribution of the network changes from pk to  p'k', as all 
nodes connected to the removed hubs will loose links, altering the de-
grees of the remaining nodes.

In ADVANCED TOPICS 8.E we combine these two changes and map the 
attack problem into the robustness problem discussed in the previous sec-
tion. In other words, we can view an attack as random node removal from 
a network with adjusted k'max and p'k'. The calculations predict that the crit-
ical threshold fc for attacks on a scale-free network with degree exponent Ȗ�
is the solution of the equation [9, 10].

Fig. 8.12 shows the numerical solution of Eq. 8.12 in function of Ȗ, leading 
to several conclusions:

•  While fc for failures decreases monotonically with Ȗ, fc for attacks has 
a complex non-monotonic behavior.

•  fc for attacks is always smaller than fc for random failures.

•  For large Ȗ a scale-free network behaves like a random network. As 
a random network lacks hubs, an attack on a random network will 
follow a scenario similar to random node removal. Numerical sim-
ulations support this expectation: Fig. 8.13 shows that a random net-
work has a finite percolation threshold under both random failures 
and attack. The main difference is that fc for attacks is lower than fc 
for random failures.

•  The failure and the attack thresholds converge to each other for large 
Ȗ. Indeed, if Ȗ ĺ ∞ then pk ĺ į(k − kmin), meaning that all nodes have 
the same degree kmin. Therefore random failures and targeted attacks 
become indistinguishable in the Ȗ ĺ ∞ limit, when fc ̹  1 − 1/(kmin − 1).

The airport analogy helps us understand the fragility of scale-free net-
works to attacks: the closing of two hub airports, like Chicago’s O’Hare 
Airport or the Atlanta International Airport for only a few hours would 
be headline news, altering travel throughout the US. Should some se-
ries of events lead to the simultaneous closure of the Atlanta, Chicago, 
Denver, and New York airports, the biggest hubs, air travel within the 
U.S. would come to a halt within hours.
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The probability that a node belongs to the 
largest connected component in a scale-free 
network under attack (red) and under ran-
dom failures (green). In the case of an attack 
the nodes are removed in a decreasing order 
of their degree: we first remove the biggest 
hub, followed by the next biggest and so on. 
In the case of failures, the order in which the 
nodes are chosen is random, independent of 
the node’s degree. The plot illustrates the net-
work’s extreme fragility to attacks: fc is rather 
small, implying that the removal of only a few 
hubs can disintegrate the network. The initial 
network has a degree exponent ਠ�= 2.5, kmin = 2 
and N = 10, 000.
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The dependence of the critical probability, fc, 
on the degree exponent ਠ, for scale-free net-
works with kmin = 2, 3, as predicted by Eq. 8.12, 
for an attack (red curves) and by Eq. 8.7 for 
random failures (green curves). Note that Eq. 
8.12 predicts that the attack threshold fc ĺ 0 
for kmin = 2 and fc ĺ�1/2 for kmin = 3, in line with 
the behavior observed in the figure.
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the functionality of internet is affected?
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a) can go extinct till an ecosystem collapses?

b) should be reintroduced to restore an ecosystem?
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work under attack. To do this we rely on the fact that hub removal 
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Modeling always implies some degree of randomization, namely loss of details 
=> network properties can be related to features of the degree distribution 
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Thank you!
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