

Topological patterns in ecological networks

BIO365 – Ecological Networks

Leandro G. Cosmo leandro.giacobellicosmo@uzh.ch

How can we understand the complexity of natural ecosystems?

Quantifying interactions and understanding the role of species:

Direct interactions (degree)

Indirect interactions through shortest pathways (closeness)

Indirect interactions through all possible pathways (Katz)

Are all networks the same?

Networks can be represented as interaction matrices

Adjacency matrix: all species in rows and columns

Adjacency matrix: all species in rows and columns

Incidence/Biadjacency matrix: species from one set in rows and from another in columns

Incidence/Biadjacency matrix: species from one set in rows and from another in columns

Incidence/Biadjacency matrix: species from one set in rows and from another in columns

Scaling up to more plant and animal species: can we see any pattern in the incidence matrix?

Scaling up to more plant and animal species: can we see any pattern in the incidence matrix?

Interactions of plants with a lower degree are contained within the interactions of plants with a higher degree

Interactions of animals with a lower degree are contained within the interactions of animals with a higher degree

Can we see any pattern in the incidence matrix? Nestedness!

Nestedness: interactions of specialists are a subset of the interactions of generalists

How can we quantify this pattern?

 c_{ij} = Number of shared interactions between row *i* and *j*

 c_{ij} = Number of shared interactions between row *i* and *j* k_i = Number of interactions in row *i* k_j = Number of interactions in row *j*

 c_{ij} = Number of shared interactions between row *i* and *j* k_i = Number of interactions in row *i* k_j = Number of interactions in row *j*

$$\boldsymbol{o_{ij}} = \frac{\boldsymbol{c_{ij}}}{\min(\boldsymbol{k_i}, \boldsymbol{k_{j}})}$$

 c_{ij} = Number of shared interactions between row *i* and *j* k_i = Number of interactions in row *i* k_j = Number of interactions in row *j*

$$o_{ij} = \frac{8}{8} = 1$$

How can we quantify this pattern? Measuring overlap between **all possible** *ij* pairs of rows

Measuring overlap between **all possible** *ij* pairs of rows Divide by the number of possible pairs

Measuring overlap between **all possible** *ij* pairs of rows Divide by the number of possible pairs

Interactions of animals with a lower degree are contained within the interactions of animals with a higher degree

Repeat for the columns:

Measuring overlap between all possible ij pairs of columns

A general formula for quantifying nestedness: **n** varies between 0 and 1

Now that we now how to quantify a nested pattern: Where can we find it in nature?

What about networks that look like this? Division into subgroups or "modules"

Division into subgroups or "modules" Extreme case: completely isolated subnetworks

Modularity: species interact much more frequently within the same module than they do with species from other modules

How can we measure modularity?

How to find the modules? What is the optimal way to divide the network?

How to find the modules?

Dividing the network to maximize within modules interactions

The problem: we may end up with trivial "optimal divisions"

 l_s = Number of interactions within module *s*

L = Number of interactions in the network

 d_s = Sum of the degrees of species in module s

 l_s = Number of interactions within module *s*

L = Number of interactions in the network

 d_s = Sum of the degrees of species in module s

The term $\left(\frac{d_s}{L}\right)^2$ represents the expected fraction of interactions within module *s* for a network where interactions are randomly rewired

Measuring modularity: optimization algorithms

Now that we now how to quantify a modular pattern: Where can we find it in nature?

MYRMECOPHYTES & ANTS	Cecropia purpuracens	Cecropia concolor	Cecropia distachya	Cecropia ficifolia	Pouruma heterophylla	Hirtella myrmecophila	Hirtella physophora	Duroia saccifera	Cordia nodosa	Cordia aff. nodosa	Tococa bullifera	Maieta guianensis	Maieta poeppiggi	Tachigali polyphylla	Tachigali myrmecophila	Amaioua aff. guianensis
Camponotus balzanii	11															
Azteca alfari	1															
Azteca isthmica	1	1	1	1												
Azteca aff. isthmica	1			2												
Allomerus D				l	23		-									
Allomerus prancei							5	_								
Auomerus aj. octoarticulata						3	/0 7	21								
Allowania gurinun atata					ι		3	븲		- 1						
Auomerus auripunciaia								2		2						- 1
Crematogaster B								<u>۱</u>	1	1						
Azteca HC										3		~				
Azteca G										24	11	2				
Crematogaster D										3	2					
Azteca CO								L		-4		~ ~	~ ~ ~			
Cremeto center A											1	93	28			
Arteen TO							1				4	'	<u>ا</u> י			- 1
Cremetogester C											1					
Arteog sohummani										l	3		3	-	-	
Azieca schummani														2	.'	
Pseudomyrmex nugrescens															10	
Asteen D														10	10	
Azteca D															1	
Azteca polymorpha															2	
Crematogaster E										1			L		-1	_
Azieca Q					-		-				1	F	E	~	-	3
Unoccupied plants	14	0	0	0	0	0	3	8	0	31	0	5	5	6	5	0

00129405 © Mark Moffett / Minden / naturepl.com

(Guimarães et al. 2007)

	1		2		3				4	Ļ		14.97						5				6					
	Tomoplagia argentiniensis Tomoplagia necudoranicillato	romopugu pseuvopentuata Tomoplagia fiebrigi	Tomoplagia reimoseri Tomoplagia minuta	Tomoplagia grandis	Tomoplagia achromoptera Tomoplagia brasiliensis	Dictyotrypeta atacta	1 omopuagua cipoensis Tomoplagia tripunctata	Tomoplagia incompleta	Xanthaciura biocellata Dictrostrumeta su 1	Dictyotrypeta sp.1	Tomoplagia sp.1	Tomoplagia dimorphica	Tomoplagia variabilis Tetreuaresta sp.1	Tomoplagia formosa	Tomoplagia punctata	Tetreuaresta sp.2 Dictyotrypeta sp.3	Tomoplagia bicolor	Tetreuaresta sp.3 Trunanea en 1	Acrotaeniini n.gen.l sp.l	Tomoplagia interrupta	Tomoplagia aczeli Xanthaciura chrysura	Tomoplagia voluta	Acrotaenimi n.gen.2 sp.1	Tomoplagia rupestris	Tomoplagia sp.2 Tetreuaresta sp.4	Total	
1 V Cyrtocymura scorpioides	X X			-																						2	2
V Vernonanthura aff. lucida V Vernonanthura aff. lucida V Vernonanthura aff. laxa V Vernonanthura aff. laxa V Vernonanthura aff. laxa V Vernonanthura membranacea 2 V V Vernonanthura membranacea V Vernonanthura subverticillata V Vernonanthura mariana V Vernonanthura mariana V Lessingianthus buddleiifolius L Proteopsis sp.01 3 V Lessingianthus coriaceus V Lessingianthus sonseus V Lessingianthus roseus V Lessingianthus veretorum V Lessingianthus sonseus V Lessingianthus suneariofolius V Lessingianthus prostantifolius V Lessingianthus pumillus V Lessingianthus spontulus V Lessingianthus spinolex V Lessingianthus sp.03 H Chresta sp.01 V Lessingianthus sp.01 L Eremanthus sp.01 <			X X X X X X X X X X X X X X X X X X X	X	x x x x x x	x x x y x y		X X X X X X X X X X X X X X X X X X X	x x x x x x x x x x x x x x x x x x x		X X X X X X X X X X X X X X X						x									2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
V Lessingianthus hoveaefolius V Lepidaploa rufogrisea V Chrysolaena herbacea C Centratherum punctatum V Vernonanthura ferruginea V Lepidaploa sp.01 V Lepidaploa salEmannii V Lepidaploa aurea								X X X	x x		X X X X X	X	x x	x	x											4 3 2 1 1 1 1	4 3 2 1 1 1
																											(Prado & Lewinsohn 200/

Biomass

How can we understand the complexity of natural ecosystems?

Are all networks the same?

Quantifying topological patterns:

Nestedness:

Low interaction intimacy, hierarchical organization of interactions

Modularity

High interaction intimacy, tightly connected, functional groups/units

How can understand the mechanisms underlying nestedness and modularity in networks?

What are the consequences of these patterns for the ecology and evolution of species?

Topological patterns in ecological networks

BIO365 – Ecological Networks

Leandro G. Cosmo leandro.giacobellicosmo@uzh.ch