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null models in ecological research



foreword: a tale of birds and islands

Jared Diamond

Bismark Archipelago, New Guinea
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foreword: a tale of birds and islands



what explains the distribu?on of bird species?

Bismark Archipelago, New Guinea



Bismarck black myzomela 
(found on 23 islands)

black sunbird 
(found on 14 islands)

compe@@on leads 
 to exclusion 

what explains the distribu?on of bird species?



Bismark Archipelago, New Guinea

“compe??on is responsible for determining the 
pa@erns of assemblage composi?on.”

assembly rules

Jared Diamond



Bismark Archipelago, New Guinea

what explains the distribu?on of bird species?



Bismark Archipelago, New Guinea

“In order to to demonstrate that compe??on is responsible 
for the joint distribu?ons of species, one would have to 
falsify a null hypothesis sta?ng that the distribu?ons are 
generated  by the species randomly and individually 
colonizing an archipelago”

Daniel Simberloff

what explains the distribu?on of bird species?



the null model

• A null model is a pattern-generating model that is based on randomisation 
of ecological data.


• The goal of a null model strategy is to construct a model that deliberately 
excludes a mechanism being tested. 


• Can the patterns in the real data be reproduced in a simple model that 
does not incorporate biologically important mechanisms? 



the null expecta?on

N = 10 islands, Sp1 = 5 islands, Sp2 = 2 islands 
Probability of findings Sp1 = 0.5, Probability of finding Sp2 = 0.2 

Probability of overlap (if independent) = 0.5 x 0.2 = 0.1



Jared Diamond

Daniel Simberloff

Does interspecific compe@@on make species co-occurrences significantly non-random, 
and can compe@@on be inferred from observa@on of spa@al distribu@on paOerns?

inferences from observa?ons?



null models in network research



communi?es and the interac?ons between species

Artwork by Aslam Narváez Parra 



communi?es and the interac?ons between species
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measuring the structural proper?es of networks
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assessing the significance of the structural paFern
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Nestedness = 0.8 … so what?



null models

a null model is an appropriate randomisa/on of the observed matrix intended to serve 
as a benchmark to assess the significance of a given pa9ern.  It is a pa9ern-genera/ng 
model that deliberately excludes a mechanism of interest, and so it serves to test 
whether the observed level of structure can be explained out of chance. 



assessing the significance of the structural paFern
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examples of null models



examples of null models
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null expecta@ons of structure

i. equifrequent null model 

ii. equifrequent column null model 

iii. probabilis?c cell null model 

iv. swap null model



equifrequent null model

total number of “1”s

poten/al number of “1”s
⇢ij = =

12

25
= 0.48

each cell ij has the same probability of having a “1” given by the total frac@on of “1”s in the observed matrix 

1 1 1 1 1
1 1 1
1 1
1
1

1 1
1 1 1

1 1 1
1 1

1 1
observed randomization



equifrequent column null model

the probability  of drawing an interac@on in cell  is the frac@on of “1”s in column  pij ij j

1 1 1 1
1 1 1
1 1

1
1

observed randomization

1?

⇢2,3 =
2

5
= 0.4

frac/on of “1”s  
in column j 

⇢ij = =
1

n

nX

i=1

Mij



the probability  of drawing an interac@on in cell  is propor@onal to the degree of both row  and column  pij ij i j

probabilis?c cell null model
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observed randomization
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3/5 + 2/5

2
= 0.5
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pi + qj
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frac%on of “1”s in column 



swap null model

✓
1 0
0 1

◆ ✓
0 1
1 0

◆

it maintains exactly the number of “1”s in both rows and columns by  
sequen@ally reshuffling 2x2 sub matrices with the same row and column total as follows: 

1 1 1 0 1
1 1 1
1 1
0 1
1

observed randomization

0 1 1 1 1
1 1 1
1 1
1 1 0
1



examples of null models
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null expecta@ons of structure

i. equifrequent null model 

ii. equifrequent column null model 

iii. probabilis?c cell null model 

iv. swap null model



use cases of null models
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use case I: significance of a network paFern



use case I: significance of a network paFern
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use case I: significance of a network paFern

z =
xi � x

�

observed value average across 
replicates

standard devia2on 
across replicates
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use case I: significance of a network paFern

P = 0.025P = 0.025 P = 0.95

1.96

z =
xi � x
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observed value average across 
replicates

standard devia2on 
across replicates



use case I: significance of a network paFern

P = 0.025P = 0.025 P = 0.95

1.96

• a z-score is a useful sta@s@c for calcula@ng the probability of a value occurring within a normal 
distribu@on with a mean of 0 and standard devia@on of 1. 

• a paOern is sta@s@cally significant (p < 0.05) if Z > 1.96.  
• the p-value tells us how likely it is that the paOern we observed could have arisen by chance



use case II: comparing across networks
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The raw value of nestedness, for example, depends on matrix size, shape, and filling.  
It cannot be compared across communi@es!

community a community b community c community d
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xi � x
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observed value average across 
replicates

standard devia2on 
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use case II: comparing across networks



community a community b

community c community d

• a z-score is a useful sta@s@c for normalising a value and therefore making it comparable across systems.  
• Rela@ve nestedness (z-score) can be used to compare across communi@es. 

use case II: comparing across networks



use cases of null models

significance of a network paFern comparing across networks



caveats of null models



which null model to use?

• The goal of a null model strategy is to construct a model that deliberately 
excludes a mechanism being tested. 



which null model to use?

• Keep in mind what we want to fix! (e.g. only the total number of “1”s, the 
number of “1”s per row, number of “1”s per row and column, …). 

• Understand the limita?ons of each null model in the context of the trade-off 
between errors of type 1 (mistakenly rejec?ng a true null hypothesis) and 
errors of type 2 (mistakenly accep?ng a wrong null hypothesis).



type I and type II error

true false

accept

reject

de
ci

si
on

 a
bo

ut
 n

ul
l

  h
yp

ot
he

si
s 

( 
   

)
H

0

null hypothesis (    ) isH0

correct 

correct 

type II error

type I error

The type I error occurs when the a true null 
hypothesis is rejected. 

The type II error occurs when a false null 
hypothesis is erroneously failed to be rejected. 



type I and type II error
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Example:  
H0: water is contaminated 

H1: water is not contaminated

The type I error: we erroneously conclude that 
water that is indeed contaminated is not 
contaminated (dangerous!).  

The type II error: we erroneously conclude 
that water that is not contaminated is 
contaminated (not as bad?).



type I and type II error
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Example:  
H0: network is not nested 

H1: network is nested

The type I error: we erroneously conclude that 
a network that is not nested is nested.  

The type II error: we erroneously conclude 
that a network that is indeed nested is not 
nested (conserva?ve tests).



null models and error types

type II error
(conserva2ve test)

type I error

(wrongly rejec2ng H0)

equifrequent equifrequent column probabilis?c cell

i
j

null model used to  
generate data matrices

null model used to  
calculate their p-values

Rodríguez-Gironés & Santamaria (2006)



outline for this morning 

i. Null models in ecological research 

ii. Null models in network research 

iii. Examples of null models 

iv. Use cases of null models 

v. Caveats of null models



Jared Diamond

back to Diamond’s assembly rules



outline for this aIernoon 

1. using null models “by hand” 

2. tes@ng the significance of a network paOern 

3. comparing network paOerns across communi@es 


